Solveeit Logo

Question

Mathematics Question on Integration

The integral 1/43/4cos(2cot11x1+x)dx\int_{1/4}^{3/4} \cos\left( 2 \cot^{-1} \sqrt{\frac{1 - x}{1 + x}} \right) \, dx is equal to:

A

12-\frac{1}{2}

B

14\frac{1}{4}

C

12\frac{1}{2}

D

14-\frac{1}{4}

Answer

14-\frac{1}{4}

Explanation

Solution

Given:

θ=cot1(1x1+x)\theta = \cot^{-1} \left( \sqrt{\frac{1 - x}{1 + x}} \right)

Therefore:

cot(θ)=1x1+x    tan(θ)=1+x1x\cot(\theta) = \sqrt{\frac{1 - x}{1 + x}} \implies \tan(\theta) = \sqrt{\frac{1 + x}{1 - x}}

Using the double-angle formula for cosine:

cos(2θ)=12sin2(θ)\cos(2\theta) = 1 - 2\sin^2(\theta)

Now express sin2(θ)\sin^2(\theta):

sin2(θ)=11+cot2(θ)\sin^2(\theta) = \frac{1}{1 + \cot^2(\theta)}

Substituting cot2(θ)=1x1+x\cot^2(\theta) = \frac{1 - x}{1 + x}, we get:

sin2(θ)=11+1x1+x=1+x2\sin^2(\theta) = \frac{1}{1 + \frac{1 - x}{1 + x}} = \frac{1 + x}{2}

Thus:

cos(2θ)=12sin2(θ)=121+x2=x\cos(2\theta) = 1 - 2\sin^2(\theta) = 1 - 2 \cdot \frac{1 + x}{2} = -x

The integral simplifies to:

1/43/4cos(2cot11x1+x)dx=1/43/4xdx\int_{1/4}^{3/4} \cos \left( 2 \cot^{-1} \sqrt{\frac{1 - x}{1 + x}} \right) dx = \int_{1/4}^{3/4} -x dx

Evaluate the simplified integral:

1/43/4xdx=1/43/4xdx\int_{1/4}^{3/4} -x dx = - \int_{1/4}^{3/4} x dx

The integral of xx is:

xdx=x22\int x dx = \frac{x^2}{2}

Evaluate the limits:

\-[x22]1/43/4=((34)22(14)22)\- \left[ \frac{x^2}{2} \right]_{1/4}^{3/4} = - \left( \frac{\left(\frac{3}{4}\right)^2}{2} - \frac{\left(\frac{1}{4}\right)^2}{2} \right)

Simplify:

\-(932132)=832=14\- \left( \frac{9}{32} - \frac{1}{32} \right) = - \frac{8}{32} = -\frac{1}{4}

Final Answer:

14-\frac{1}{4}