Question
Mathematics Question on Integration
The integral ∫1/43/4cos(2cot−11+x1−x)dx is equal to:
A
−21
B
41
C
21
D
−41
Answer
−41
Explanation
Solution
Given:
θ=cot−1(1+x1−x)
Therefore:
cot(θ)=1+x1−x⟹tan(θ)=1−x1+x
Using the double-angle formula for cosine:
cos(2θ)=1−2sin2(θ)
Now express sin2(θ):
sin2(θ)=1+cot2(θ)1
Substituting cot2(θ)=1+x1−x, we get:
sin2(θ)=1+1+x1−x1=21+x
Thus:
cos(2θ)=1−2sin2(θ)=1−2⋅21+x=−x
The integral simplifies to:
∫1/43/4cos(2cot−11+x1−x)dx=∫1/43/4−xdx
Evaluate the simplified integral:
∫1/43/4−xdx=−∫1/43/4xdx
The integral of x is:
∫xdx=2x2
Evaluate the limits:
\-[2x2]1/43/4=−(2(43)2−2(41)2)
Simplify:
\-(329−321)=−328=−41
Final Answer:
−41