Question
Mathematics Question on Methods of Integration
The integral ∫02π3+2sinx+cosx1dx is equal to
A
tan−1(2)
B
tan−1(2)−4π
C
21tan−1(2)−8π
D
21
Answer
tan−1(2)−4π
Explanation
Solution
I=∫02π3+2sinx+cosx1dx
=∫02π3(1+tan2(2x))+2(2tan(2x))+(1−tan2(2x))1+tan2(2x)dx
Let tan(2x)=t⇒sec2(2x)dx=2dt
I=∫014+2t2+4t2dt
I=∫01t2+2t+2dt
I=∫01(t+1)2+1dt
I=tan−1(t+1)01
=I=tan−1(2)−4π
So, the correct option is (B): tan−1(2)−4π