Solveeit Logo

Question

Mathematics Question on Methods of Integration

The integral 0π213+2sinx+cosxdx\int_0^{\frac{\pi}{2}} \frac{1}{3 + 2\sin x + \cos x} \, dx is equal to

A

tan1(2)\tan^{-1}(2)

B

tan1(2)π4\tan^{-1}(2) - \frac{\pi}{4}

C

12tan1(2)π8\frac{1}{2}\tan^{-1}(2) - \frac{\pi}{8}

D

12\frac{1}{2}

Answer

tan1(2)π4\tan^{-1}(2) - \frac{\pi}{4}

Explanation

Solution

I=0π213+2sinx+cosxdxI = \int_0^{\frac{\pi}{2}} \frac{1}{3 + 2\sin x + \cos x} \, dx

=0π21+tan2(x2)3(1+tan2(x2))+2(2tan(x2))+(1tan2(x2))dx=\int_0^{\frac{\pi}{2}} \frac{1 + \tan^2\left(\frac{x}{2}\right)}{3\left(1 + \tan^2\left(\frac{x}{2}\right)\right) + 2\left(2\tan\left(\frac{x}{2}\right)\right) + \left(1 - \tan^2\left(\frac{x}{2}\right)\right)} \, dx

Let tan(x2)=tsec2(x2)dx=2dt\tan\left(\frac{x}{2}\right) = t \quad \Rightarrow \quad \sec^2\left(\frac{x}{2}\right) \, dx = 2 \, dt

I=012dt4+2t2+4tI = \int_0^1 \frac{2dt}{4 + 2t^2 + 4t}

I=01dtt2+2t+2I = \int_0^1 \frac{dt}{t^2 + 2t + 2}

I=01dt(t+1)2+1I = \int_0^1 \frac{dt}{(t+1)^2 + 1}

I=tan1(t+1)01I = \tan^{-1}(t+1) \Big|_{0}^{1}

=I=tan1(2)π4=I = \tan^{-1}(2) - \frac{\pi}{4}
So, the correct option is (B): tan1(2)π4\tan^{-1}(2) - \frac{\pi}{4}