Question
Question: The integral \[\int_0^{\dfrac{1}{2}} {\dfrac{{\ln \left( {1 + 2x} \right)}}{{1 + 4{x^2}}}dx} \] equa...
The integral ∫0211+4x2ln(1+2x)dx equals:
A) 4πln2
B) 8πln2
C) 12πln2
D) 32πln2
Solution
Here first we will assume 2x=yand then substitute the values of limits so obtained as well the value of the expression inside the integral. Then we will use the following identity:-
1+tan2θ=sec2θ
And again substitute the values of limits and the expression inside the integral and finally then we will use the property of definite integrals i.e. ∫abf(x)dx=∫abf(a+b−x)dx and then solve the integral to get the desired answer.
Complete step-by-step solution:
The given expression can be written as:-
2 \times {x^0} = \dfrac{{dy}}{{dx}} \\
\Rightarrow 2 = \dfrac{{dy}}{{dx}}
2dx = dy \\
\Rightarrow dx = \dfrac{{dy}}{2}
y = 2\left( 0 \right) \\
y = 0
y = 2\left( {\dfrac{1}{2}} \right) \\
\Rightarrow y = 1
= \int_0^1 {\dfrac{{\ln \left( {1 + y} \right)}}{{1 + {y^2}}}\left( {\dfrac{{dy}}{2}} \right)} \\
= \dfrac{1}{2}\int_0^1 {\dfrac{{\ln \left( {1 + y} \right)}}{{1 + {y^2}}}dy} ........................................\left( 2\right)
\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}} \\
\dfrac{d}{{dx}}\tan x = {\sec ^2}x
{y^0} = {\sec ^2}\theta .\dfrac{{d\theta }}{{dy}} \\
\Rightarrow 1 = {\sec ^2}\theta .\dfrac{{d\theta }}{{dy}}
I = \dfrac{1}{2}\int_0^{\dfrac{\pi }{4}} {\ln \left( {1 + \dfrac{{1 - \tan \theta }}{{1 + \left( 1 \right).\tan\theta }}} \right)} d\theta \\
\Rightarrow I = \dfrac{1}{2}\int_0^{\dfrac{\pi }{4}} {\ln \left( {1 + \dfrac{{1 - \tan \theta }}{{1 + \tan\theta }}} \right)} d\theta \\
\Rightarrow I = \dfrac{1}{2}\int_0^{\dfrac{\pi }{4}} {\ln \left( {\dfrac{{1 + 1}}{{1 + \tan \theta }}} \right)} d\theta
\\
\Rightarrow I = \dfrac{1}{2}\int_0^{\dfrac{\pi }{4}} {\ln \left( {\dfrac{2}{{1 + \tan \theta }}} \right)}d\theta
I + \dfrac{I}{2} = \dfrac{1}{2}\int_0^{\dfrac{\pi }{4}} {\ln \left( 2 \right)d\theta } \\
\Rightarrow \dfrac{{3I}}{2} = \dfrac{{\ln \left( 2 \right)}}{2}\int_0^{\dfrac{\pi }{4}} {d\theta }
3I = \dfrac{\pi }{4}\ln \left( 2 \right) \\
\Rightarrow I = \dfrac{\pi }{{12}}\ln \left( 2 \right) \\