Solveeit Logo

Question

Question: The integral \(I = \int {\dfrac{{dx}}{{{{\left( {x + 1} \right)}^{3/4}} * {{\left( {x - 2} \right)}^...

The integral I=dx(x+1)3/4(x2)5/4I = \int {\dfrac{{dx}}{{{{\left( {x + 1} \right)}^{3/4}} * {{\left( {x - 2} \right)}^{5/4}}}}} is equal to:
A.4(x+1x2)1/4+C4{\left( {\dfrac{{x + 1}}{{x - 2}}} \right)^{1/4}} + C
B.4(x2x+2)1/4+C4{\left( {\dfrac{{x - 2}}{{x + 2}}} \right)^{1/4}} + C
C.43(x+1x2)1/4+C\dfrac{{ - 4}}{3}{\left( {\dfrac{{x + 1}}{{x - 2}}} \right)^{1/4}} + C
D.43(x2x+2)1/4+C\dfrac{{ - 4}}{3}{\left( {\dfrac{{x - 2}}{{x + 2}}} \right)^{1/4}} + C

Explanation

Solution

In mathematics, Integral equations are which an unknown function appears under an integral sign. Integration is the algebraic method to find the integral for a function at any point of graph. Hence integral is also called the anti-derivative because integration is a reverse process of differentiation. In the given question, first of all we will break the given term (x2)\left( {x - 2} \right) and assume it astt, then put this value in the given equation and differentiate it with respect to tt after that integrating the obtained result we will get the answer.

Complete step-by-step answer:
Given that:
I=dx(x+1)3/4(x2)5/4I = \int {\dfrac{{dx}}{{{{\left( {x + 1} \right)}^{3/4}} *{{\left( {x - 2} \right)}^{5/4}}}}}
We can write the above equation as:
1(x2)2/4(x+1)3/4×dx(x2)3/4\int {\dfrac{1}{{{{\left( {x - 2} \right)}^{2/4}} * {{\left( {x + 1} \right)}^{3/4}}}}} \times \dfrac{{dx}}{{{{\left( {x - 2} \right)}^{3/4}}}}
Here we break the term (x2)\left( {x - 2} \right)
Let
(x2)1/4=t..............(1){\left( {x - 2} \right)^{1/4}} = t..............\left( 1 \right)
(x2)=t4 x=t4+2  \Rightarrow \left( {x - 2} \right) = {t^{4}} \\\ \Rightarrow x = {t^4} + 2 \\\
From equation one:
14(x2)3/4dx=dt dx(x2)3/4=4dt  \dfrac{1}{4}{\left( {x - 2} \right)^{ - 3/4}}dx = dt \\\ \Rightarrow \dfrac{{dx}}{{{{\left( {x - 2} \right)}^{ 3/4}}}} = 4dt \\\
Integrating the above equation
We get:
4dtt2(t4+3)3/4\int {\dfrac{{4dt}}{{{t^2}{{\left( {{t^4} + 3} \right)}^{^{3/4}}}}}}
Substitute (t4+3)1/4t=u\dfrac{{{{\left( {{t^4} + 3} \right)}^{1/4}}}}{t} = u …………….. (2)
Now differentiate on both sides of the above equation:

[t14(t4+3)3/44t3(t4+3)1/4t2]dt=du [t4(t4+3)3/4(t4+3)1/4]/t2dt=du t4(t4+3)t2(t4+3)3/4dt=du 3dtt2(t4+3)3/4=du  \left[ {\dfrac{{t\dfrac{1}{4}{{\left( {{t^4} + 3} \right)}^{ - 3/4}}4{t^3} - {{\left( {{t^4} + 3} \right)}^{1/4}}}}{{{t^2}}}} \right]dt = du \\\ \Rightarrow \left[ {\dfrac{{{t^4}}}{{{{\left( {{t^4} + 3} \right)}^{3/4}}}} - {{\left( {{t^4} + 3} \right)}^{1/4}}} \right]/{t^2}dt = du \\\ \Rightarrow \dfrac{{{t^4}\left( {{t^4} + 3} \right)}}{{{t^2}{{\left( {{t^4} + 3} \right)}^{3/4}}}}dt = du \\\ \Rightarrow \dfrac{{ - 3dt}}{{{t^2}{{\left( {{t^4} + 3} \right)}^{3/4}}}} = du \\\

Substitute the value of u from equation 2
43du 43u+C  \dfrac{{ - 4}}{3}\int {du} \\\ \Rightarrow \dfrac{{ - 4}}{3}u + C \\\
Put the value of u from equation 2
We get:
43[(t4+3)3/4t]+C\dfrac{{ - 4}}{3}\left[ {\dfrac{{{{\left( {{t^4} + 3} \right)}^{3/4}}}}{t}} \right] + C
Now we will put the value of t from equation 1
We get

43[(x2)1/4+3(x2)1/4]+C 43[(x2+3)1/4(x2)1/4]+C 43[(x+1)1/4(x2)1/4]+C 43[(x+1x2)1/4]+C  \Rightarrow \dfrac{{ - 4}}{3}\left[ {\dfrac{{{{\left( {x - 2} \right)}^{1/4}} + 3}}{{{{\left( {x - 2} \right)}^{1/4}}}}} \right] + C \\\ \Rightarrow \dfrac{{ - 4}}{3}\left[ {\dfrac{{{{\left( {x - 2 + 3} \right)}^{1/4}}}}{{{{\left( {x - 2} \right)}^{1/4}}}}} \right] + C \\\ \Rightarrow \dfrac{{ - 4}}{3}\left[ {\dfrac{{{{\left( {x + 1} \right)}^{1/4}}}}{{{{\left( {x - 2} \right)}^{1/4}}}}} \right] + C \\\ \Rightarrow \dfrac{{ - 4}}{3}\left[ {{{\left( {\dfrac{{x + 1}}{{x - 2}}} \right)}^{1/4}}} \right] + C \\\

Hence the correct answer is option C

Note: The given problem we have to break the equation, without this we can’t solve the equation. After that assume the common term as tt and integrate it with respect tott. Consider the outcome as uu and differentiate it. We have to add a constant integration symbol c and put the value of tt in it. Thus we get the answer.