Solveeit Logo

Question

Mathematics Question on integral

The integral
24π022x2(2+x2)4+x4dx\frac{24}{\pi} \int_{0}^{\sqrt{2}} \frac{2 - x^2}{(2 + x^2) \sqrt{4 + x^4}} \, dx
is equal to _______.

Answer

The correct answer is 3
I=24π022x2(2+x2)4+x4dxI = \frac{24}{\pi} \int_{0}^{\sqrt2} \frac{2 - x^2}{(2 + x^2) \sqrt{4 + x^4}} \, dx
Let
x=2tdx=2dtx = \sqrt2t ⇒ dx = \sqrt2dt
I=24π01(22t2)2(2+2t2)4+4t4dtI = \frac{24}{\pi} \int_{0}^{1} \frac{(2 - 2t^2) \sqrt{2}}{(2 + 2t^2) \sqrt{4 + 4t^4}} \, dt
=122π01(1t21)dt(t+1t)(t+1t)22= \frac{12\sqrt{2}}{\pi} \int_{0}^{1} \frac{\left(\frac{1}{t^2} - 1\right)dt}{\left(t + \frac{1}{t}\right) \sqrt{\left(t + \frac{1}{t}\right)^2 - 2}} \,
Let
t+1t=ut + \frac{1}{t} = u
(11t2)dt=du⇒ ( 1 - \frac{1}{t²} ) dt = du
I=122π2duu422duI = \frac{12\sqrt{2}}{\pi} \int_{2}^{\infty} \frac{-du}{u \sqrt{4^2 - 2}} \, du
I=122π2duu2(2u)2I = \frac{12\sqrt{2}}{\pi} \int_{2}^{\infty} \frac{du}{u^2 \sqrt{-(\frac{\sqrt{2}}u)^2}}
I=122π12012dp1p2I = \frac{12\sqrt{2}}{\pi} \int_{\frac{1}{\sqrt{2}}}^{0} \frac{-\frac{1}{\sqrt{2}}dp}{\sqrt{1 - p^2}}
I=12π[sin1(p)]012I = \frac{12}{\pi} \left[ \sin^{-1}(p) \right]_{0}^{\frac{1}{\sqrt{2}}}
=12π.π4= \frac{12}{π} . \frac{π}{4}
= 3