Solveeit Logo

Question

Mathematics Question on General and Particular Solutions of a Differential Equation

The integral dx(1+x)xx2\displaystyle\int \frac{dx}{(1+ \sqrt{x}) \sqrt{x - x^2}} is equal to (where CC is a constant of integration)

A

21+x1x+C-2 \sqrt{\frac{1+ \sqrt{x}}{1 - \sqrt{x}}} + C

B

21x1+x+C-2 \sqrt{\frac{1- \sqrt{x}}{1+ \sqrt{x}}} + C

C

1x1+x+C- \sqrt{\frac{1- \sqrt{x}}{1+\sqrt{x}}} + C

D

21+x1x+C2 \sqrt{\frac{1+ \sqrt{x}}{1 - \sqrt{x}}} + C

Answer

21x1+x+C-2 \sqrt{\frac{1- \sqrt{x}}{1+ \sqrt{x}}} + C

Explanation

Solution

I=dx(1+x)xx2I =\int \frac{ dx }{(1+\sqrt{ x }) \sqrt{ x - x ^{2}}}
put x=cos2θx =\cos ^{2} \theta
dx=2cosθsinθdθdx =-2 \cos \theta \sin \theta d \theta
I=2sinθcosθdθ(1+cosθ)cosθsinθ=2dθ2cos2θ/2I =\int \frac{-2 \sin \theta \cos \theta d \theta}{(1+\cos \theta) \cos \theta \sin \theta} \,\,\,\,\,=-2 \int \frac{ d \theta}{2 \cos ^{2} \theta / 2}
=sec2(θ2)dθcosθ=x=-\int \sec ^{2}\left(\frac{\theta}{2}\right) d \theta \,\,\,\,\,\,\, \therefore \cos \theta=\sqrt{ x }
=2tanθ/2+C1tan2θ/21+tan2θ/2=x=-2 \tan \theta / 2+ C \,\,\,\,\,\, \frac{1-\tan ^{2} \theta / 2}{1+\tan ^{2} \theta / 2}=\sqrt{ x }
=21x1+x+c=-2 \sqrt{\frac{1-\sqrt{ x }}{1+\sqrt{ x }}}+ c
tan2(θ2)=1x1+x\Rightarrow \tan ^{2}\left(\frac{\theta}{2}\right)=\frac{1-\sqrt{ x }}{1+\sqrt{ x }}