Question
Mathematics Question on Integrals of Some Particular Functions
The integral 161∫2x3(x2+2)2dx is equal to
A
611−loge4
B
1211+loge4
C
611+loge4
D
1211−loge4
Answer
611+loge4
Explanation
Solution
The correct answer is (C) : 611+loge4
I=161∫2x3(x2+2)2dx
=161∫2x3x4(1+x22)2dx
Let, 1+x22=t⇒x3−4dx=dt
I=−43∫23(t−12)2t2dt
I=−43∫23(2t−1)2t2dt
I=−443∫23(1−t2+t21)dt
I=−1[t−2ℓn∣t∣−t1]323
I=−1[(23−2ℓn23−32)−(3−2ℓn3−31)]
I=−1[2ℓn2−611]
I=611−ℓn4