Question
Mathematics Question on integral
The integral ∫017[z1]1dx where [⋅] denotes the greatest integer function, is equal to
A
1+6loge(76)
B
1−6loge(76)
C
loge(67)
D
1−7loge(76)
Answer
1+6loge(76)
Explanation
Solution
∫017[z1]1dx, let x1=t
x2−1dx=dt
=∫∞1−t27[t]1dt=∫1∞t27[t]1dt
=∫127t21dt+∫2372t21dt+…
=71[−t1]12+721[t−1]23+731[t−1]23+…
=∑n=1∞7n1(n1−n+11)
=∑n=1∞n(71)n−7∑n=1∞n+1(71)n+1
=−log(1−71)+7log(1−71)+1
=1+6log76