Solveeit Logo

Question

Mathematics Question on integral

The integral 0117[1z]dx∫_0^ 1 \frac{ 1}{7^{[\frac{1}{z}}]}dx where [⋅] denotes the greatest integer function, is equal to

A

1+6loge(67)1+6log_e(\frac{6}{7})

B

16loge(67)1-6log_e(\frac{6}{7})

C

loge(76)log_e(\frac{7}{6})

D

17loge(67)1-7log_e(\frac{6}{7})

Answer

1+6loge(67)1+6log_e(\frac{6}{7})

Explanation

Solution

0117[1z]dx∫_0^ 1 \frac{ 1}{7^{[\frac{1}{z}}]}dx, let 1x=t\frac{1}{x}=t

1x2dx=dt\frac{−1}{x^2}dx=dt

=11t27[t]dt=11t27[t]dt∫_∞ ^1 \frac{1}{−t^27[t]}dt=∫_1 ^∞ \frac{1}{t^27[t]}dt

=1217t2dt+23172t2dt+∫_1^ 2 \frac{1}{7t^2}dt+∫_2 ^3 \frac{1}{7^2t^2}dt+…

=17[1t]12+172[1t]23+173[1t]23+\frac{1}{7}\bigg[−\frac{1}{t}\bigg]_1^ 2+\frac{1}{7 ^2}\bigg[\frac{−1}{t}\bigg]_2^ 3+\frac{1}{7 ^3}\bigg[\frac{−1}{t}\bigg]_2^ 3+…

=n=117n(1n1n+1)∑_{n=1} ^∞\frac{1}{7_n}\bigg(\frac{1}{n}−\frac{1}{n+1}\bigg)

=n=1(17)nn7n=1(17)n+1n+1∑_{n=1} ^∞\frac{(\frac{1}{7})^n}{n}−7∑_{n=1} ^∞\frac{(\frac{1}{7})^{n+1}}{n+1}

=log(117)+7log(117)+1−log\bigg(1−\frac{1}{7}\bigg)+7log\bigg(1−\frac{1}{7}\bigg)+1

=1+6log671+6\log\frac{6}{7}