Solveeit Logo

Question

Question: The integer next above (sqrt3+1)^2m contains...

The integer next above (sqrt3+1)^2m contains

Answer

is divisible by 2^(m+1)

Explanation

Solution

To solve this problem, we will use the concept of binomial expansion and properties of conjugate surds, similar to the provided example.

Let the given expression be XX: X=(3+1)2mX = (\sqrt{3}+1)^{2m}

First, simplify the base of the expression: (3+1)2=(3)2+12+231=3+1+23=4+23(\sqrt{3}+1)^2 = (\sqrt{3})^2 + 1^2 + 2 \cdot \sqrt{3} \cdot 1 = 3 + 1 + 2\sqrt{3} = 4+2\sqrt{3}. So, X=(4+23)mX = (4+2\sqrt{3})^m.

Now, consider its conjugate term, YY: Y=(423)mY = (4-2\sqrt{3})^m.

Let's analyze the value of YY. We know that 3<12<43 < \sqrt{12} < 4, which means 3<23<43 < 2\sqrt{3} < 4. Therefore, 44<423<434-4 < 4-2\sqrt{3} < 4-3, which simplifies to 0<423<10 < 4-2\sqrt{3} < 1. Since 0<423<10 < 4-2\sqrt{3} < 1, any positive integer power of it will also be between 0 and 1. Thus, 0<Y<10 < Y < 1.

Next, consider the sum X+YX+Y: X+Y=(4+23)m+(423)mX+Y = (4+2\sqrt{3})^m + (4-2\sqrt{3})^m. Using the binomial expansion for (a+b)m+(ab)m=2[(m0)am+(m2)am2b2+](a+b)^m + (a-b)^m = 2 \left[ \binom{m}{0}a^m + \binom{m}{2}a^{m-2}b^2 + \dots \right], where a=4a=4 and b=23b=2\sqrt{3}. b2=(23)2=4×3=12b^2 = (2\sqrt{3})^2 = 4 \times 3 = 12. So, X+Y=2[(m0)4m+(m2)4m2(12)+(m4)4m4(12)2+]X+Y = 2 \left[ \binom{m}{0}4^m + \binom{m}{2}4^{m-2}(12) + \binom{m}{4}4^{m-4}(12)^2 + \dots \right]. All terms inside the square bracket are integers. Therefore, X+YX+Y is an integer. Let K=X+YK = X+Y. So KK is an integer.

We have X+Y=KX+Y=K and 0<Y<10 < Y < 1. From X+Y=KX+Y=K, we can write X=KYX = K-Y. Since 0<Y<10 < Y < 1, we have 1<Y<0-1 < -Y < 0. Adding KK to all parts of the inequality: K1<KY<KK-1 < K-Y < K. So, K1<X<KK-1 < X < K.

Since K1<X<KK-1 < X < K, XX is not an integer. The integer next above XX is X=K\lceil X \rceil = K. Thus, the integer next above (3+1)2m(\sqrt{3}+1)^{2m} is KK.

Now, let's determine the properties of KK: K=(4+23)m+(423)mK = (4+2\sqrt{3})^m + (4-2\sqrt{3})^m K=(2(2+3))m+(2(23))mK = (2(2+\sqrt{3}))^m + (2(2-\sqrt{3}))^m K=2m(2+3)m+2m(23)mK = 2^m (2+\sqrt{3})^m + 2^m (2-\sqrt{3})^m K=2m[(2+3)m+(23)m]K = 2^m \left[ (2+\sqrt{3})^m + (2-\sqrt{3})^m \right].

Let Pm=(2+3)m+(23)mP_m = (2+\sqrt{3})^m + (2-\sqrt{3})^m. Using the binomial expansion again: Pm=2[(m0)2m+(m2)2m2(3)2+(m4)2m4(3)4+]P_m = 2 \left[ \binom{m}{0}2^m + \binom{m}{2}2^{m-2}(\sqrt{3})^2 + \binom{m}{4}2^{m-4}(\sqrt{3})^4 + \dots \right] Pm=2[(m0)2m+(m2)2m2(3)+(m4)2m4(32)+]P_m = 2 \left[ \binom{m}{0}2^m + \binom{m}{2}2^{m-2}(3) + \binom{m}{4}2^{m-4}(3^2) + \dots \right]. All terms inside the square bracket are integers, so PmP_m is an even integer. Let Pm=2JP_m = 2J for some integer JJ.

Substitute Pm=2JP_m = 2J back into the expression for KK: K=2m(2J)=2m+1JK = 2^m (2J) = 2^{m+1}J. This shows that KK is divisible by 2m+12^{m+1}.

Therefore, the integer next above (3+1)2m(\sqrt{3}+1)^{2m} is divisible by 2m+12^{m+1}.