Question
Question: The integer n for which \(\mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {\cos x - 1} \right)\left(...
The integer n for which x→0limxn(cosx−1)(cosx−ex) is a finite nonzero number is?
A. 3
B. 6
C. 9
D. 12
Solution
First we are required to find x→0limxn(cosx−1)(cosx−ex). Note that, cosθ=1−2sin22θ. Therefore, write (cosx−1) as −2sin2(2x). Again, we know that x→0lim(xsinx)=1. Hence, substitute x→0lim(x2cosx−1)×(xn−2cosx−ex) with −21×x→0lim2xsin2x2×x→0lim(xn−2cosx−ex) and proceed.
Formula used: cosθ=1−2sin22θ
x→0lim(xsinx)=1
Complete step-by-step solution:
First we are required to find x→0limxn(cosx−1)(cosx−ex).
x→0limxn(cosx−1)(cosx−ex)
=x→0lim(x2cosx−1)×(xn−2cosx−ex)
Since cosθ=1−2sin22θ ,
=x→0lim4×(2x)2−2sin2(2x)×(xn−2cosx−ex)
=−21×x→0lim2xsin2x2×x→0lim(xn−2cosx−ex) …….(1)
Again we know that, x→0lim(xsinx)=1,
Therefore, x→0lim2xsin2x=1,
Substituting the value in (1), we get,
=−21×x→0lim2xsin2x2×x→0lim(xn−2cosx−ex)
=−21×1×x→0lim(xn−2cosx−ex)
=−21×x→0lim(xn−2cosx−ex)
Now, x→0lim(xn−2cosx−ex)is in 00 form. Therefore, we can use L’ Hospital Rule and differentiate both the numerator and denominator with respect to x.
So, we can write x→0lim(xn−2cosx−ex) as x→0lim((n−2)xn−3−sinx−ex) with the help of L’ Hospital Rule.
Therefore, −21×x→0lim(xn−2cosx−ex)
=−21×x→0lim((n−2)xn−3−sinx−ex)
=−2(n−2)1×x→0lim(xn−3−sinx−ex)
Substituting x=0 in the numerator, we get
=−2(n−2)1×−1×x→0lim(xn−31)
=2(n−2)1x→0lim(xn−31)
Now, according to the question, the limit will have finite non zero value if
xn−3=1
⇒xn−3=x0
⇒n−3=0
⇒n=3
Hence, the integer n for which x→0limxn(cosx−1)(cosx−ex) is a finite nonzero number, is 3.
Therefore, the correct answer is option (A).
Note: Note the few important formulae of limits:
x→0lim(xsinx)=1
x→0lim(xtanx)=1
x→0lim(xex−1)=1
x→0lim(xax−1)=logea
x→0limxlog(1+x)=1
x→0lim(1+x)x1=e
x→∞lim(1+x1)x=e
x→∞lim(1+xa)x=ea