Solveeit Logo

Question

Question: The integer n for which \(\mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {\cos x - 1} \right)\left(...

The integer n for which limx0(cosx1)(cosxex)xn\mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {\cos x - 1} \right)\left( {\cos x - {e^x}} \right)}}{{{x^n}}} is a finite nonzero number is?
A. 3
B. 6
C. 9
D. 12

Explanation

Solution

First we are required to find limx0(cosx1)(cosxex)xn\mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {\cos x - 1} \right)\left( {\cos x - {e^x}} \right)}}{{{x^n}}}. Note that, cosθ=12sin2θ2\cos \theta = 1 - 2{\sin ^2}\dfrac{\theta }{2}. Therefore, write (cosx1)\left( {\cos x - 1} \right) as 2sin2(x2) - 2{\sin ^2}\left( {\dfrac{x}{2}} \right). Again, we know that limx0(sinxx)=1\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\sin x}}{x}} \right) = 1. Hence, substitute limx0(cosx1x2)×(cosxexxn2)\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\cos x - 1}}{{{x^2}}}} \right) \times \left( {\dfrac{{\cos x - {e^x}}}{{{x^{n - 2}}}}} \right) with 12×limx0(sinx2x2)2×limx0(cosxexxn2) - \dfrac{1}{2} \times \mathop {\lim }\limits_{x \to 0} {\left( {\dfrac{{\sin \dfrac{x}{2}}}{{\dfrac{x}{2}}}} \right)^2} \times \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\cos x - {e^x}}}{{{x^{n - 2}}}}} \right) and proceed.

Formula used: cosθ=12sin2θ2\cos \theta = 1 - 2{\sin ^2}\dfrac{\theta }{2}
limx0(sinxx)=1\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\sin x}}{x}} \right) = 1

Complete step-by-step solution:
First we are required to find limx0(cosx1)(cosxex)xn\mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {\cos x - 1} \right)\left( {\cos x - {e^x}} \right)}}{{{x^n}}}.
limx0(cosx1)(cosxex)xn\mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {\cos x - 1} \right)\left( {\cos x - {e^x}} \right)}}{{{x^n}}}
=limx0(cosx1x2)×(cosxexxn2)= \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\cos x - 1}}{{{x^2}}}} \right) \times \left( {\dfrac{{\cos x - {e^x}}}{{{x^{n - 2}}}}} \right)
Since cosθ=12sin2θ2\cos \theta = 1 - 2{\sin ^2}\dfrac{\theta }{2} ,
=limx0(2sin2(x2)4×(x2)2)×(cosxexxn2)= \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{ - 2{{\sin }^2}\left( {\dfrac{x}{2}} \right)}}{{4 \times {{\left( {\dfrac{x}{2}} \right)}^2}}}} \right) \times \left( {\dfrac{{\cos x - {e^x}}}{{{x^{n - 2}}}}} \right)
=12×limx0(sinx2x2)2×limx0(cosxexxn2)= - \dfrac{1}{2} \times \mathop {\lim }\limits_{x \to 0} {\left( {\dfrac{{\sin \dfrac{x}{2}}}{{\dfrac{x}{2}}}} \right)^2} \times \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\cos x - {e^x}}}{{{x^{n - 2}}}}} \right) …….(1)
Again we know that, limx0(sinxx)=1\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\sin x}}{x}} \right) = 1,
Therefore, limx0(sinx2x2)\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\sin \dfrac{x}{2}}}{{\dfrac{x}{2}}}} \right)=1,
Substituting the value in (1), we get,
=12×limx0(sinx2x2)2×limx0(cosxexxn2)= - \dfrac{1}{2} \times \mathop {\lim }\limits_{x \to 0} {\left( {\dfrac{{\sin \dfrac{x}{2}}}{{\dfrac{x}{2}}}} \right)^2} \times \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\cos x - {e^x}}}{{{x^{n - 2}}}}} \right)
=12×1×limx0(cosxexxn2)= - \dfrac{1}{2} \times 1 \times \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\cos x - {e^x}}}{{{x^{n - 2}}}}} \right)
=12×limx0(cosxexxn2)= - \dfrac{1}{2} \times \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\cos x - {e^x}}}{{{x^{n - 2}}}}} \right)
Now, limx0(cosxexxn2)\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\cos x - {e^x}}}{{{x^{n - 2}}}}} \right)is in 00\dfrac{0}{0} form. Therefore, we can use L’ Hospital Rule and differentiate both the numerator and denominator with respect to x.
So, we can write limx0(cosxexxn2)\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\cos x - {e^x}}}{{{x^{n - 2}}}}} \right) as limx0(sinxex(n2)xn3)\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{ - \sin x - {e^x}}}{{(n - 2){x^{n - 3}}}}} \right) with the help of L’ Hospital Rule.
Therefore, 12×limx0(cosxexxn2) - \dfrac{1}{2} \times \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\cos x - {e^x}}}{{{x^{n - 2}}}}} \right)
=12×limx0(sinxex(n2)xn3)= - \dfrac{1}{2} \times \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{ - \sin x - {e^x}}}{{(n - 2){x^{n - 3}}}}} \right)
=12(n2)×limx0(sinxexxn3)= - \dfrac{1}{{2(n - 2)}} \times \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{ - \sin x - {e^x}}}{{{x^{n - 3}}}}} \right)
Substituting x=0 in the numerator, we get
=12(n2)×1×limx0(1xn3)= - \dfrac{1}{{2(n - 2)}} \times - 1 \times \mathop {\lim }\limits_{x \to 0} \left( {\dfrac{1}{{{x^{n - 3}}}}} \right)
=12(n2)limx0(1xn3)= \dfrac{1}{{2(n - 2)}}\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{1}{{{x^{n - 3}}}}} \right)
Now, according to the question, the limit will have finite non zero value if
xn3=1{x^{n - 3}} = 1
xn3=x0\Rightarrow {x^{n - 3}} = {x^0}
n3=0\Rightarrow n - 3 = 0
n=3\Rightarrow n = 3
Hence, the integer n for which limx0(cosx1)(cosxex)xn\mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {\cos x - 1} \right)\left( {\cos x - {e^x}} \right)}}{{{x^n}}} is a finite nonzero number, is 3.

Therefore, the correct answer is option (A).

Note: Note the few important formulae of limits:
limx0(sinxx)=1\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\sin x}}{x}} \right) = 1
limx0(tanxx)=1\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\tan x}}{x}} \right) = 1
limx0(ex1x)=1\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{{e^x} - 1}}{x}} \right) = 1
limx0(ax1x)=logea\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{{a^x} - 1}}{x}} \right) = {\log _e}a
limx0log(1+x)x=1\mathop {\lim }\limits_{x \to 0} \dfrac{{\log (1 + x)}}{x} = 1
limx0(1+x)1x=e\mathop {\lim }\limits_{x \to 0} {\left( {1 + x} \right)^{\dfrac{1}{x}}} = e
limx(1+1x)x=e\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \dfrac{1}{x}} \right)^x} = e
limx(1+ax)x=ea\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \dfrac{a}{x}} \right)^x} = {e^a}