Solveeit Logo

Question

Question: The integer n for which \(\lim_{x \rightarrow 0}\frac{\left( \cos x - 1 \right)\left( \cos x - e^{x}...

The integer n for which limx0(cosx1)(cosxex)xn\lim_{x \rightarrow 0}\frac{\left( \cos x - 1 \right)\left( \cos x - e^{x} \right)}{x^{n}} is a finite non-zero number is

A

1

B

2

C

3

D

4

Answer

3

Explanation

Solution

Give that, limx0(cosx1)(cosxex)xn\lim_{x \rightarrow 0}\frac{\left( \cos x - 1 \right)\left( \cos x - e^{x} \right)}{x^{n}}

= finite non zero number

= limx0(cosx1)(1+cosx)(excosx)xn(1+cosx)\lim_{x \rightarrow 0}\frac{\left( \cos x - 1 \right)\left( 1 + \cos x \right)\left( e^{x} - \cos x \right)}{x^{n}\left( 1 + \cos x \right)}

= limx0(sin2xx2).((excosx)xn2).(11+cosx)\lim_{x \rightarrow 0}\left( \frac{\sin^{2}x}{x^{2}} \right).\left( \frac{\left( e^{x} - \cos x \right)}{x^{n - 2}} \right).\left( \frac{1}{1 + \cos x} \right)

= 12.12limx0[1+x1!+x22!+x33!+.....][1x22!+x44!x66!+.....]xn21^{2}.\frac{1}{2}\lim_{x \rightarrow 0}\frac{\left\lbrack 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + .....\infty \right\rbrack - \left\lbrack 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + .....\infty \right\rbrack}{x^{n - 2}}

=12limx0x(1+x+x23!+2x34!+.....)xn2\frac{1}{2}\lim_{x \rightarrow 0}\frac{x\left( 1 + x + \frac{x^{2}}{3!} + \frac{2x^{3}}{4!} + .....\infty \right)}{x^{n - 2}}

= 12limx0x(1+x+x23!+2x34!+.....)xn3\frac{1}{2}\lim_{x \rightarrow 0}\frac{x\left( 1 + x + \frac{x^{2}}{3!} + \frac{2x^{3}}{4!} + .....\infty \right)}{x^{n - 3}}

For this limit to be finite n − 3 = 0

⇒ n = 3