Solveeit Logo

Question

Question: The integer n for which \(\lim_{x \rightarrow 0}\frac{(\cos x - 1)(\cos x - e^{x})}{x^{n}}\) is a fi...

The integer n for which limx0(cosx1)(cosxex)xn\lim_{x \rightarrow 0}\frac{(\cos x - 1)(\cos x - e^{x})}{x^{n}} is a finite non-zero number is

A

1

B

2

C

3

D

4

Answer

3

Explanation

Solution

nn cannot be negative integer for then the limit =0= 0

Limit = limx02sin2x222(x/2)2excosxxn2=12limx0excosxxn2\lim_{x \rightarrow 0}\frac{2\sin^{2}\frac{x}{2}}{2^{2}(x/2)^{2}}\frac{e^{x} - \cos x}{x^{n - 2}} = \frac{1}{2}\lim_{x \rightarrow 0}\frac{e^{x} - \cos x}{x^{n - 2}}

(n1n \neq 1 for then the limit = 0) =12= \frac { 1 } { 2 } limx0ex+sinx(n2)xn3.\lim_{x \rightarrow 0}\frac{e^{x} + \sin x}{(n - 2)x^{n - 3}}.

So, if n=3n = 3, the limit is 12(n2)\frac{1}{2(n - 2)}which is finite. If n=4,n = 4, the limit is infinite.