Solveeit Logo

Question

Question: The \(\int{\dfrac{1}{x+{{x}^{5}}}dx}=f\left( x \right)+c\), then the value of \(\int{\dfrac{{{x}^{4}...

The 1x+x5dx=f(x)+c\int{\dfrac{1}{x+{{x}^{5}}}dx}=f\left( x \right)+c, then the value of x4x+x5dx\int{\dfrac{{{x}^{4}}}{x+{{x}^{5}}}dx} is
A. logxf(x)+c\log x-f\left( x \right)+c
B. f(x)+logx+cf\left( x \right)+\log x+c
C. f(x)logx+cf\left( x \right)-\log x+c
D. None of these

Explanation

Solution

We first explain the terms dydx\dfrac{dy}{dx} where y=f(x)y=f\left( x \right).We break the given expression and then need to integrate the equation once to find all the solutions of the integration. We take one arbitrary constant term for the integration.

Complete step by step answer:
We need to find the integral of x4x+x5dx\int{\dfrac{{{x}^{4}}}{x+{{x}^{5}}}dx}. We have
x4x+x5=1+x41x(1+x4) x4x+x5=1+x4x(1+x4)1x+x5 x4x+x5=1x1x+x5 \dfrac{{{x}^{4}}}{x+{{x}^{5}}} =\dfrac{1+{{x}^{4}}-1}{x\left( 1+{{x}^{4}} \right)} \\\ \Rightarrow \dfrac{{{x}^{4}}}{x+{{x}^{5}}}=\dfrac{1+{{x}^{4}}}{x\left( 1+{{x}^{4}} \right)}-\dfrac{1}{x+{{x}^{5}}} \\\ \Rightarrow \dfrac{{{x}^{4}}}{x+{{x}^{5}}}=\dfrac{1}{x}-\dfrac{1}{x+{{x}^{5}}} \\\
We can form x4x+x5dx\int{\dfrac{{{x}^{4}}}{x+{{x}^{5}}}dx} as
(1x1x+x5)dx=dxxdxx+x5\int{\left( \dfrac{1}{x}-\dfrac{1}{x+{{x}^{5}}} \right)dx}=\int{\dfrac{dx}{x}}-\int{\dfrac{dx}{x+{{x}^{5}}}}
Now we use the integral theorem of dxx=logx+c\int{\dfrac{dx}{x}}=\log \left| x \right|+c. Given 1x+x5dx=f(x)+c\int{\dfrac{1}{x+{{x}^{5}}}dx}=f\left( x \right)+c.

\therefore \int{\dfrac{{{x}^{4}}}{x+{{x}^{5}}}dx}=\log \left| x \right|-f\left( x \right)+c $$ **Hence, the correct option is A.** **Note:** The breaking of the function is necessary for the integration as chain rule can not be applied separately. If the particular value for the variable $x$ is not available then we have to use the modulus form for the integration.