Solveeit Logo

Question

Question: The \[\int {(1 - \cos x)} \cos e{c^2}x\] \[dx\] equals A. \[\tan \dfrac{x}{2} + c\] B. \[ - \cot...

The (1cosx)cosec2x\int {(1 - \cos x)} \cos e{c^2}x dxdx equals
A. tanx2+c\tan \dfrac{x}{2} + c
B. cotx2+c - \cot \dfrac{x}{2} + c
C. 2tanx2+c2\tan \dfrac{x}{2} + c
D. 2cotx2+c - 2\cot \dfrac{x}{2} + c

Explanation

Solution

For this type of integration, we need to first open the brackets and then solve the Integration individually i.e. We know,
(xy)dx=xdxydx\int {(x - y)dx = \int {xdx - \int {ydx} } }
We will then write cscx\csc x in terms of sinx\sin xand then solve cosx×cosec2x\int {\cos x \times \cos e{c^2}x} dxdxin terms of sinx\sin x and cosx\cos x by substituting sinx\sin x by tt and then replacing \cos x$$$$dx by dtdt.We will then subtract the two integrals in the given order. We need to keep in mind all the formulas for integration and trigonometry. After finding the value of the integral, we need to transform the obtained answer according to the given options.

Complete step by step answer:
So, we have the integral (1cosx)cosec2x\int {(1 - \cos x)} \cos e{c^2}x dxdx
Opening the brackets, we get,
(1cosx)cosec2x\int {(1 - \cos x)\cos e{c^2}x} dxdx =(cosec2x(cosx×cosec2x))dx= \int {(\cos e{c^2}x - (\cos x \times \cos e{c^2}x))dx}
Separating the integrals, we get,
(1cosx)cosec2x\int {(1 - \cos x)\cos e{c^2}x} dx$$$$ = \int {\cos e{c^2}x} dxdx - cosx×cosec2x\int {\cos x \times \cos e{c^2}x} dxdx
We know that multiplication of two minus signs yields a positive sign. Hence, we have.
(1cosx)cosec2x\int {(1 - \cos x)\cos e{c^2}x} dx$$$$ = \int {( - )( - \cos e{c^2}x)dx} $$$$ - \int {\cos x \times \cos e{c^2}x} dxdx

As we know, (cosecx=1sinx)(\cos ecx = \dfrac{1}{{\sin x}}). So, using this we have
(1cosx)cosec2x\int {(1 - \cos x)\cos e{c^2}x} dx$$$$ = ( - )\int { - \cos ecx} dx$$$$ - \int {\cos x \times \dfrac{1}{{{{\sin }^2}x}}dx}
Using the formula cosec2x=cotx+c1\int { - \cos e{c^2}x = \cot x} + {c_1}
(1cosx)cosec2x\int {(1 - \cos x)\cos e{c^2}x} dx$$$$ = ( - )(\cot x + {c_1}) - \int {\dfrac{{\cos x}}{{{{\sin }^2}x}}dx}
(1cosx)cosec2x\Rightarrow \int {(1 - \cos x)\cos e{c^2}x} dx$$$$ = ( - )(\cot x + {c_1}) - \int {\dfrac{{\cos x}}{{{{\sin }^2}x}}dx} - - - - - - (1)
We will now solve cosxsin2xdx(2)\int {\dfrac{{\cos x}}{{{{\sin }^2}x}}dx} - - - - - - (2)

Let us suppose,
\sin x = t - - - - - - (3)$$$$\sin x = t - - - - - - (3)
Now, differentiating both sides, we get
(sinx)=t\Rightarrow (\sin x)' = t'
cosx\Rightarrow \cos x dxdx =dt = dt
Now, substituting sinx=t\sin x = tand \cos x$$$$dx$$$$ = dtin (2), we get
cosxsin2xdx=dtt2\Rightarrow \int {\dfrac{{\cos x}}{{{{\sin }^2}x}}dx = \int {\dfrac{{dt}}{{{t^2}}}} }
t2dt+c2\Rightarrow \int {{t^{ - 2}}dt} + {c_2}
Using the formula tndt=tn+1n+1+k\int {{t^n}dt = \dfrac{{{t^{n + 1}}}}{{n + 1}}} + k for integration,
t1(1)+c2\Rightarrow \dfrac{{{t^{ - 1}}}}{{( - 1)}} + {c_2}
()t1+c2\Rightarrow ( - ){t^{ - 1}} + {c_2}
As t1=1t{t^{ - 1}} = \dfrac{1}{t}. So, we can write the equation as
()1t+c2( - )\dfrac{1}{t} + {c_2}

Now, replacing back the value of t in the above equation, From (3) ,we get
cosxsin2xdx=()1sinx+c2\int {\dfrac{{\cos x}}{{{{\sin }^2}x}}dx = ( - )\dfrac{1}{{\sin x}} + {c_2}}
Substituting the above value in (1), we get,
\int {(1 - \cos x)\cos e{c^2}x} $$$$dx$$$$ = ( - )(\cot x + {c_1}) - (( - )\dfrac{1}{{\sin x}} + {c_2})
\Rightarrow \int {(1 - \cos x)\cos e{c^2}x} $$$$dx$$$$ = - \cot x - {c_1} + \dfrac{1}{{\sin x}} - {c_2}
Letting k=c1+c2k = {c_1} + {c_2}
\Rightarrow \int {(1 - \cos x)\cos e{c^2}x} $$$$dx$$$$ = - \cot x + \dfrac{1}{{\sin x}} - k
\Rightarrow \int {(1 - \cos x)\cos e{c^2}x} $$$$dx$$$$ = - \cot x + \dfrac{1}{{\sin x}} - k - - - - - - (4)
Writing cotx\cot x in terms of sinx\sin xand cosx\cos x in (4) i.e. cotx=cosxsinx\cot x = \dfrac{{\cos x}}{{\sin x}} ,we get
\int {(1 - \cos x)\cos e{c^2}x} $$$$dx$$$$ = - \dfrac{{\cos x}}{{\sin x}} + \dfrac{1}{{\sin x}} - k
\Rightarrow \int {(1 - \cos x)\cos e{c^2}x} $$$$dx$$$$ = \dfrac{{ - \cos x + 1}}{{\sin x}} - k - - - - - - (5)

Now, we are given the options in terms of x2\dfrac{x}{2}angle, so we need to transform our answer according to the given options.
We know,
1cos2t=2sin2t(6)1 - \cos 2t = 2{\sin ^2}t - - - - - - (6)
And,
sin2t=2sintcost(7)\sin 2t = 2\sin t\cos t - - - - - - (7)
From (5), (6) and (7), Taking 2t=x2t = x,we get
\int {(1 - \cos x)\cos e{c^2}x} $$$$dx$$$$ = \dfrac{{2{{\sin }^2}\tfrac{x}{2}}}{{2\sin \tfrac{x}{2}\cos \tfrac{x}{2}}} - k
sinx2cosx2k\Rightarrow \dfrac{{\sin \tfrac{x}{2}}}{{\cos \tfrac{x}{2}}} - k
Letting c=kc = - k
tanx2+c\tan \tfrac{x}{2} + c
Hence, we got
\therefore \int {(1 - \cos x)\cos e{c^2}x} $$$$dx$$$$ = \tan \tfrac{x}{2} + c

Therefore, the correct option is A.

Note: The indefinite integrals of certain functions may have more than one answer in different forms. So, we have to solve in a particular way to reach the answer present in the options. However, all these forms are correct and interchangeable into one another. Indefinite integral gives us the family of curves as we don’t know the exact value of the arbitrary constant. The trigonometric formulas such as double angle formulae of sine and cosine are very useful in solving the given problem.