Solveeit Logo

Question

Question: The \( \int_0^\pi {\dfrac{{x\sin x}}{{1 + {{\cos }^2}x}}dx} \) equals ? (A) \( 0 \) (B) \( \dfr...

The 0πxsinx1+cos2xdx\int_0^\pi {\dfrac{{x\sin x}}{{1 + {{\cos }^2}x}}dx} equals ?
(A) 00
(B) π4\dfrac{\pi }{4}
(C) π24\dfrac{{{\pi ^2}}}{4}
(D) π22\dfrac{{{\pi ^2}}}{2}

Explanation

Solution

Hint : In the given question, we are provided a definite integral to solve. The given problem revolves around the concepts and properties of definite integration. The given question requires us to integrate a function of x with respect to x. Indefinite integration gives us a family of curves. Definite integral gives a numeric value.

Complete step-by-step answer :
The given question requires us to evaluate a definite integral 0πxsinx1+cos2xdx\int_0^\pi {\dfrac{{x\sin x}}{{1 + {{\cos }^2}x}}dx} in variable x consisting of rational trigonometric expression.
So, the function to be integrated is xsinx1+cos2x\dfrac{{x\sin x}}{{1 + {{\cos }^2}x}} , the upper limit of integration is π\pi and the lower limit is 00 .
Now, we know the property of definite integral according to which abf(x)=abf(a+bx)\int_a^b {f\left( x \right)} = \int_a^b {f\left( {a + b - x} \right)} . So, we will use this property so as to evaluate the definite integral.
So, we have, I=0πxsinx1+cos2xdx(1)I = \int_0^\pi {\dfrac{{x\sin x}}{{1 + {{\cos }^2}x}}dx} - - - - \left( 1 \right)
Using the property of definite integral abf(x)=abf(a+bx)\int_a^b {f\left( x \right)} = \int_a^b {f\left( {a + b - x} \right)} , we get,
I=0π(πx)sin(πx)1+cos2(πx)dx\Rightarrow I = \int_0^\pi {\dfrac{{\left( {\pi - x} \right)\sin \left( {\pi - x} \right)}}{{1 + {{\cos }^2}\left( {\pi - x} \right)}}dx}
Now, we know that sin(πx)=sinx\sin \left( {\pi - x} \right) = \sin x and cos(πx)=cosx\cos \left( {\pi - x} \right) = - \cos x .
Simplifying the expression further, we get,
I=0π(πx)sinx1+(cosx)2dx\Rightarrow I = \int_0^\pi {\dfrac{{\left( {\pi - x} \right)\sin x}}{{1 + {{\left( { - \cos x} \right)}^2}}}dx}
I=0π(πx)sinx1+cos2xdx(2)\Rightarrow I = \int_0^\pi {\dfrac{{\left( {\pi - x} \right)\sin x}}{{1 + {{\cos }^2}x}}dx} - - - - \left( 2 \right)
Now, adding the equations marked as (1)\left( 1 \right) and (2)\left( 2 \right) , we get,
I+I=0πxsinx1+cos2xdx+0π(πx)sinx1+cos2xdx\Rightarrow I + I = \int_0^\pi {\dfrac{{x\sin x}}{{1 + {{\cos }^2}x}}dx} + \int_0^\pi {\dfrac{{\left( {\pi - x} \right)\sin x}}{{1 + {{\cos }^2}x}}dx}
Opening the bracket and simplifying the expression, we get,
2I=0πxsinx1+cos2xdx+0ππsinx1+cos2xdx0πxsinx1+cos2xdx\Rightarrow 2I = \int_0^\pi {\dfrac{{x\sin x}}{{1 + {{\cos }^2}x}}dx} + \int_0^\pi {\dfrac{{\pi \sin x}}{{1 + {{\cos }^2}x}}dx - \int_0^\pi {\dfrac{{x\sin x}}{{1 + {{\cos }^2}x}}dx} }
Cancelling the like terms with opposite signs, we get,
2I=0ππsinx1+cos2xdx\Rightarrow 2I = \int_0^\pi {\dfrac{{\pi \sin x}}{{1 + {{\cos }^2}x}}dx}
Now, we get the value of integral as,
I=π20πsinx1+cos2xdx\Rightarrow I = \dfrac{\pi }{2}\int_0^\pi {\dfrac{{\sin x}}{{1 + {{\cos }^2}x}}dx}
We can solve the integral using the method of substitution.
We substitute the value of cosx\cos x as t.
So, we have, t=cosxt = \cos x
So, we will change the limits of integration according to the new variable.
Then, we know that as x approaches zero, the value of t tends to 11 . Similarly, as x approaches π\pi , the value of t tends to 1- 1 .
Differentiating both sides of t=cosxt = \cos x , we get,
dt=sinxdx\Rightarrow dt = - \sin xdx
Now, substituting the value of cosx\cos x as t and the value of sinxdx\sin xdx as dt- dt in the integral, we get,
I=π211dt1+t2\Rightarrow I = \dfrac{\pi }{2}\int_1^{ - 1} {\dfrac{{ - dt}}{{1 + {t^2}}}}
Now, we know that the integration of 11+x2\dfrac{1}{{1 + {x^2}}} with respect to x is tan1x{\tan ^{ - 1}}x . So, putting in the upper and lower limit in the integral, we get,
I=π2[tan1(1)tan1(1)]\Rightarrow I = \dfrac{{ - \pi }}{2}\left[ {{{\tan }^{ - 1}}\left( { - 1} \right) - {{\tan }^{ - 1}}\left( 1 \right)} \right]
Now, we know that the value of tan1(1)=π4{\tan ^{ - 1}}\left( 1 \right) = \dfrac{\pi }{4} and tan1(1)=π4{\tan ^{ - 1}}\left( { - 1} \right) = - \dfrac{\pi }{4} . So, we get,
I=π2[π4π4]\Rightarrow I = \dfrac{{ - \pi }}{2}\left[ { - \dfrac{\pi }{4} - \dfrac{\pi }{4}} \right]
Simplifying further, we get,
I=π2[π2]\Rightarrow I = \dfrac{{ - \pi }}{2}\left[ { - \dfrac{\pi }{2}} \right]
I=π24\Rightarrow I = \dfrac{{{\pi ^2}}}{4}
So, we get the value of the integral 0πxsinx1+cos2xdx\int_0^\pi {\dfrac{{x\sin x}}{{1 + {{\cos }^2}x}}dx} as (π24)\left( {\dfrac{{{\pi ^2}}}{4}} \right) .
Hence, option (C) is correct.
So, the correct answer is “Option C”.

Note : One must have a strong grip over integral calculus to solve such a complex question of definite integration. We also should know about the properties of integration so as to attempt this question. One must take care while doing the calculations in order to be sure of the final answer.