Solveeit Logo

Question

Physics Question on AC Voltage

The instantaneous values of alternating current and voltages in a circuit are given as i=12sin(100πt)i=\frac{1}{\sqrt2}\sin(100\pi t) ampere e=12sin(100πt+π3)e=\frac{1}{\sqrt2}\sin(100\pi t+\frac{\pi}{3}) Volt . The average power in watts consumed in the circuit is

A

14\frac{1}{4}

B

34\frac{\sqrt3}{4}

C

12\frac{1}{2}

D

18\frac{1}{8}

Answer

18\frac{1}{8}

Explanation

Solution

Given : i=12sin(100πt)i=\frac{1}{\sqrt2}\sin(100\pi t) ampere
Compare it with i=i0sin(ωt)i=i_0 \, \sin(\omega t) we get
\hspace20mmi_0=\frac{1}{\sqrt2}A
Given : e=12sin(100πt+π3)e=\frac{1}{\sqrt2}\sin\big(100\pi t+\frac{\pi}{3}\big) volt
Compare it with , we get
\hspace20mme_0=\frac{1}{\sqrt2}V,\phi=\frac{\pi}{3}
irms=i02=22A=12A\therefore \, \, i_{rms}=\frac{i_0}{\sqrt2}=\frac{\sqrt2}{\sqrt2}A=\frac{1}{2}A
\hspace20mm e_{rms}=\frac{e_0}{\sqrt2}=\frac{\frac{1}{\sqrt2}}{\sqrt2}V=\frac{1}{2}V
Average power consumed in the circuit,
\hspace20mmP=i_{rms} \, e_{rms} \, cos\phi
\hspace20mm=\big(\frac{1}{2}\big)\big(\frac{1}{2}\big)cos\frac{\pi}{3}=\big(\frac{1}{2}\big)\big(\frac{1}{2}\big)\big(\frac{1}{2}\big)=\frac{1}{8}W