Solveeit Logo

Question

Question: The instantaneous displacement of a simple pendulum oscillator is given by \(x = A\cos\left( \omega ...

The instantaneous displacement of a simple pendulum oscillator is given by x=Acos(ωt+π4)x = A\cos\left( \omega t + \frac{\pi}{4} \right). Its speed will be maximum at time

A

π4ω\frac{\mathbf{\pi}}{\mathbf{4\omega}}

B

π2ω\frac{\mathbf{\pi}}{\mathbf{2\omega}}

C

πω\frac{\pi}{\omega}

D

2πω\frac{2\pi}{\omega}

Answer

π4ω\frac{\mathbf{\pi}}{\mathbf{4\omega}}

Explanation

Solution

x=Acos(ωt+π4)x = A\cos\left( \omega t + \frac{\pi}{4} \right) and v=dxdt=Aωsin(ωt+π4)v = \frac{dx}{dt} = - A\omega\sin\left( \omega t + \frac{\pi}{4} \right)

For maximum speed,

sin(ωt+π4)=1\sin\left( \omega t + \frac{\pi}{4} \right) = 1ωt+π4=π2\omega t + \frac{\pi}{4} = \frac{\pi}{2}orωt=π2π4\omega t = \frac{\pi}{2} - \frac{\pi}{4}t=π4ωt = \frac{\pi}{4\omega}