Question
Question: The initial position of an object at rest is given by \(3\overset{\lower0.5em\hbox{\)\smash{\scripts...
The initial position of an object at rest is given by 3\overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\frown}}}{i} - 8\overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\frown}}}{j} it moves constant acceleration and reaches to the position 2\overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\frown}}}{i} + 4\overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\frown}}}{j} after 4s. What is its acceleration?
A. - \dfrac{1}{8}\overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\frown}}}{i} + \dfrac{3}{2}\overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\frown}}}{j}
B. 2\overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\frown}}}{i} - \dfrac{1}{8}\overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\frown}}}{j}
C. - \dfrac{1}{2}\overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\frown}}}{i} + 8\overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\frown}}}{j}
D. 8\overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\frown}}}{i} - \dfrac{3}{2}\overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\frown}}}{j}
Solution
To solve this question, we need to use the second kinematic equation of motion in the vector form. We have to substitute the initial velocity, acceleration and the displacement in the vector form. On equating the coefficients of \overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\frown}}}{i} and \overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\frown}}}{j} of both the sides of the vector equation thus obtained, we will get the required value of the acceleration in the vector form.
Formula used: The formula used to solve this question is given by
s=ut+21at2, here u is the initial velocity, s is the displacement, a is the acceleration, and t is the time.
Complete step-by-step solution:
Let the acceleration of the particle be given in the vector form by
\vec a = x\overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\frown}}}{i} + y\overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\frown}}}{j} (1)
According to the question, at time t=0, the object is at rest. So the initial velocity of the particle should be zero, that is,
u=0(2)
Now, the initial position of the object is given to be
r1=3i\lower0.5em⌢−8j\lower0.5em⌢(3)
Also, the final position of the object is given to be
r2=2i\lower0.5em⌢+4j\lower0.5em⌢(4)
So the displacement of the particle can be written as
s=r2−r1
Putting (3) and (4) in the above equation, we get
\vec s = \left( {2\overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\frown}}}{i} + 4\overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\frown}}}{j} } \right) - \left( {3\overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\frown}}}{i} - 8\overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\frown}}}{j} } \right)
\Rightarrow \vec s = - \overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\frown}}}{i} + 12\overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\frown}}}{j} __(5)
Also, the time taken by the particle to cover this displacement is equal to 4s, that is,
t=4s __________(6)
Now, from the second kinematic equation, we have
s=ut+21at2
Writing this in the vector form, we have
s=ut+21at2
Substituting (1), (2), (5) and (6) in the above equation, we have
- \overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\frown}}}{i} + 12\overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\frown}}}{j} = 0 \times 4 + \dfrac{1}{2} \times \left( {x\overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\frown}}}{i} + y\overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\frown}}}{j} } \right) \times {4^2}
\Rightarrow 8x\overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\frown}}}{i} + 8y\overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\frown}}}{j} = - \overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\frown}}}{i} + 12\overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\frown}}}{j}
Equating the coefficients of \overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\frown}}}{i} of both the sides, we get
8x=−1
⇒x=−81ms−2____(7)
Similarly equating the coefficients of \overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\frown}}}{j} of both the sides, we get
8y=12
⇒y=23ms−2 _________(8)
Putting (7) and (8) in (1) we finally get the acceleration as
\vec a = - \dfrac{1}{8}\overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\frown}}}{i} + \dfrac{3}{2}\overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\frown}}}{j}
Hence, the correct answer is option A.
Note: Instead of using the second equation of motion in the vector form, we could also apply it separately for the two directions along x and y axis. By that way also we could get the components of the acceleration.