Solveeit Logo

Question

Question: The initial phase angle for \(i = 10\sin \omega t + 8\cos \omega t\) is (A) \({\tan ^{ - 1}}\left(...

The initial phase angle for i=10sinωt+8cosωti = 10\sin \omega t + 8\cos \omega t is
(A) tan1(45){\tan ^{ - 1}}\left( {\dfrac{4}{5}} \right)
(B) tan1(54){\tan ^{ - 1}}\left( {\dfrac{5}{4}} \right)
(C) sin1(45){\sin ^{ - 1}}\left( {\dfrac{4}{5}} \right)
(D) 900{90^0}

Explanation

Solution

We are given with an equation and are asked to find the initial phase angle for the same. Thus, we will firstly evaluate the equation at time t=0t = 0. Then, we will use some basic trigonometric ideas to manipulate the evaluated value and then come up with an answer.

Complete step by step solution:
Here,
The given equation is,
\Rightarrow i=10sinωt+8cosωti = 10\sin \omega t + 8\cos \omega t
Now,
For the initial value, we take time t=0t = 0
Taking here, we get
\Rightarrow i=10sin(0)+8cos(0)i = 10\sin \left( 0 \right) + 8\cos \left( 0 \right)
We know,
sin(0)=0\sin \left( 0 \right) = 0 Andcos(0)=1\cos \left( 0 \right) = 1
Thus, we get
\Rightarrow i=8(1)i = 8\left( 1 \right)
Further, we get
i=8i = 8
Now,
\Rightarrow io=(10)2+(8)2{i_o} = \sqrt {{{\left( {10} \right)}^2} + {{\left( 8 \right)}^2}}
Further, we get
io=164{i_o} = \sqrt {164}
Where,io{i_o} is the amplitude of the motion.
Now,
As per the generic equation of such motion,
i=iosin(ωt+ϕ)i = {i_o}\sin \left( {\omega t + \phi } \right)
For timet=0t = 0,
i=i0sinϕi = {i_0}\sin \phi
Then, we get
sinϕ=iio\sin \phi = \dfrac{i}{{{i_o}}}
Thus, we get
sinϕ=8164\sin \phi = \dfrac{8}{{\sqrt {164} }}
Thus,
\Rightarrow tanϕ=816464\tan \phi = \dfrac{8}{{\sqrt {164 - 64} }}
Thus,
\Rightarrow tanϕ=810\tan \phi = \dfrac{8}{{10}}
Thus,
\Rightarrow tanϕ=45\tan \phi = \dfrac{4}{5}
Hence, we get
\Rightarrow ϕ=tan1(45)\phi = {\tan ^{ - 1}}\left( {\dfrac{4}{5}} \right)

Hence, the correct option is (A).

Note: We have converted the sine function to a tangent one as all the given options are in the same format. We used basic trigonometry for conversion. One should not confuse it to be a given parameter.