Solveeit Logo

Question

Question: The initial concentration of N₂O₅ in the given first order reaction: N₂O₅(g)→2NO₂(g)+$\frac{1}{2}$O...

The initial concentration of N₂O₅ in the given first order reaction:

N₂O₅(g)→2NO₂(g)+12\frac{1}{2}O₂(g)

was 1.20 × 10⁻² mol L⁻¹ at 318K. The concentration of N₂O₅ after 46 minutes was 0.20 × 10⁻² mol L⁻¹. The value of rate constant of the reaction at 318 K is x min⁻¹. Then find the value of 1000 X.

(Given log 3 = 0.48, log 2 = 0.30 ) (In 10 = 2.3)

Answer

39

Explanation

Solution

The reaction is N₂O₅(g) → 2NO₂(g) + ½O₂(g). The reaction is first order with respect to N₂O₅. The integrated rate law for a first-order reaction is given by:

k=1tln([A]0[A]t)k = \frac{1}{t} \ln\left(\frac{[A]_0}{[A]_t}\right)

where [A]0[A]_0 is the initial concentration, [A]t[A]_t is the concentration at time tt, and kk is the rate constant.

Given:

  • Initial concentration of N₂O₅, [A]0=1.20×102[A]_0 = 1.20 \times 10^{-2} mol L⁻¹
  • Concentration of N₂O₅ after t=46t = 46 minutes, [A]t=0.20×102[A]_t = 0.20 \times 10^{-2} mol L⁻¹

Substitute these values into the integrated rate law:

k=146 minln(1.20×102 mol L⁻¹0.20×102 mol L⁻¹)k = \frac{1}{46 \text{ min}} \ln\left(\frac{1.20 \times 10^{-2} \text{ mol L⁻¹}}{0.20 \times 10^{-2} \text{ mol L⁻¹}}\right) k=146ln(1.200.20)k = \frac{1}{46} \ln\left(\frac{1.20}{0.20}\right) k=146ln(6)k = \frac{1}{46} \ln(6)

We are given log 3 = 0.48, log 2 = 0.30, and ln 10 = 2.3. We know that ln(y)=log10(y)×ln(10)\ln(y) = \log_{10}(y) \times \ln(10). Using the given values:

log10(6)=log10(2×3)=log10(2)+log10(3)=0.30+0.48=0.78\log_{10}(6) = \log_{10}(2 \times 3) = \log_{10}(2) + \log_{10}(3) = 0.30 + 0.48 = 0.78.

Now, convert log10(6)\log_{10}(6) to ln(6)\ln(6) using the given ln(10)=2.3\ln(10) = 2.3:

ln(6)=log10(6)×ln(10)\ln(6) = \log_{10}(6) \times \ln(10) ln(6)=0.78×2.3\ln(6) = 0.78 \times 2.3

Calculate 0.78×2.30.78 \times 2.3: 0.78×2.3=1.7940.78 \times 2.3 = 1.794

So, ln(6)=1.794\ln(6) = 1.794.

Now substitute the value of ln(6)\ln(6) back into the equation for kk:

k=146×1.794k = \frac{1}{46} \times 1.794 min⁻¹ k=1.79446k = \frac{1.794}{46} min⁻¹

Calculate the value of kk:

k=0.039k = 0.039 min⁻¹

The value of the rate constant is given as xx min⁻¹. So, x=0.039x = 0.039.

We need to find the value of 1000x1000x.

1000x=1000×0.0391000x = 1000 \times 0.039 1000x=391000x = 39