Solveeit Logo

Question

Question: The inequality sin<sup>–1</sup> (sin 5) \> x<sup>2</sup> – 4x holds if-...

The inequality sin–1 (sin 5) > x2 – 4x holds if-

A

x = 2 –92π\sqrt { 9 - 2 \pi }

B

x = 2 + 92π\sqrt { 9 - 2 \pi }

C

xĪ (2 –92π\sqrt { 9 - 2 \pi }, 2 +92π\sqrt { 9 - 2 \pi })

D

x > 2 +92π\sqrt { 9 - 2 \pi }

Answer

xĪ (2 –92π\sqrt { 9 - 2 \pi }, 2 +92π\sqrt { 9 - 2 \pi })

Explanation

Solution

Since 3π2<5<2\frac { 3 \pi } { 2 } < 5 < 2,

We have sin 5 < 0, so sin–1 (sin 5) = 2p – 5

Thus the given inequality can be written as

2p – 5 > x2 – 4x or x2 – 4x – (2p – 5) < 0

Ž [x4164(2π5)2]\left[ x - \frac { 4 - \sqrt { 16 - 4 ( 2 \pi - 5 ) } } { 2 } \right]

[x4+164(2π5)2]\left[ x - \frac { 4 + \sqrt { 16 - 4 ( 2 \pi - 5 ) } } { 2 } \right]< 0

Ž [x – 2 –92π\sqrt { 9 - 2 \pi }] [x – (2 +92π\sqrt { 9 - 2 \pi })] < 0

x Ī (2 –92π\sqrt { 9 - 2 \pi }), (2 +92π\sqrt { 9 - 2 \pi }).