Solveeit Logo

Question

Physics Question on Inductance

The inductance L of a solenoid of length l , whose windings are. made of material of density D and resistivity ρ\rho is (the winding resistance is R)

A

μ04πlRmρD\frac{\mu_0}{4\pi l}\frac{Rm}{\rho D}

B

μ04πrlmρD\frac{\mu_0}{4\pi r}\frac{lm}{\rho D}

C

μ04πlR2mρD\frac{\mu_0}{4\pi l}\frac{R^2m}{\rho D}

D

μ02πRlmρD\frac{\mu_0}{2\pi R}\frac{lm}{\rho D}

Answer

μ04πlRmρD\frac{\mu_0}{4\pi l}\frac{Rm}{\rho D}

Explanation

Solution

For a solenoid, L=μ0N2AlL = \mu_0 N^2\frac{A}{l} . If xx is the length of the wire and aa is the area of cross-section, then R=πxaR = \frac{\pi x}{a} and m=axDm = axD Rm=ϕxaaxD,x=RmϕDRm = \frac{\phi x}{a} axD,x = \sqrt{\frac{Rm}{\phi D}} Also, x=2πrN,N=x2πr(L=μ0N2Al)x = 2 \pi rN , N = \frac{x}{2 \pi r} \left( \therefore \, L = \frac{\mu_0N^2 A}{l} \right) \therefore L=μ0(x2πr)2πr2l=μ04πlRmϕDL = \mu_0 \left( \frac{x}{2 \pi r} \right)^2 \frac{ \pi r^2}{l} = \frac{\mu_0}{4 \pi l} \frac{Rm}{\phi D}