Solveeit Logo

Question

Question: The indefinite integral of (12 sin x + 5 cos x)<sup>–1</sup> is, for any arbitrary constant –...

The indefinite integral of (12 sin x + 5 cos x)–1 is, for any arbitrary constant –

A

1/13 log tan(x2+12tan1512)\left| \tan\left( \frac{x}{2} + \frac{1}{2}\tan^{- 1}\frac{5}{12} \right) \right| + c

B

1/13 log tan(x2+12tan1125)\left| \tan\left( \frac{x}{2} + \frac{1}{2}\tan^{- 1}\frac{12}{5} \right) \right| + c

C

1/13 log tan(x+tan1512)\left| \tan\left( x + \tan^{- 1}\frac{5}{12} \right) \right| + c

D

1/13 log tan(x+tan1125)\left| \tan\left( x + \tan^{- 1}\frac{12}{5} \right) \right| + c

Answer

1/13 log tan(x2+12tan1512)\left| \tan\left( \frac{x}{2} + \frac{1}{2}\tan^{- 1}\frac{5}{12} \right) \right| + c

Explanation

Solution

With a = tan–1512\frac{5}{12}, sin a = 513\frac{5}{13} and cos a = 1213\frac{12}{13}

= dx13sin(x+α)\int_{}^{}\frac{dx}{13\sin(x + \alpha)}

= 11312sec2x+α2tanx+α2dx\frac { 1 } { 13 } \int \frac { \frac { 1 } { 2 } \sec ^ { 2 } \frac { x + \alpha } { 2 } } { \tan \frac { x + \alpha } { 2 } } d x

= 113\frac{1}{13} log tan(x2+12tan1512)\left| \tan\left( \frac{x}{2} + \frac{1}{2}\tan^{- 1}\frac{5}{12} \right) \right| + c