Solveeit Logo

Question

Question: The indefinite integral $\int \frac{dx}{(x^2+4x+5)^2}$ equals:...

The indefinite integral dx(x2+4x+5)2\int \frac{dx}{(x^2+4x+5)^2} equals:

Answer

x+22(x2+4x+5)+12arctan(x+2)+C\frac{x+2}{2(x^2+4x+5)} + \frac{1}{2} \arctan(x+2) + C

Explanation

Solution

To evaluate the indefinite integral dx(x2+4x+5)2\int \frac{dx}{(x^2+4x+5)^2}, we first complete the square in the denominator:

x2+4x+5=(x2+4x+4)+1=(x+2)2+1x^2 + 4x + 5 = (x^2 + 4x + 4) + 1 = (x+2)^2 + 1.

The integral becomes dx((x+2)2+1)2\int \frac{dx}{((x+2)^2+1)^2}.

Let u=x+2u = x+2. Then du=dxdu = dx. The integral transforms to du(u2+1)2\int \frac{du}{(u^2+1)^2}.

This is a standard integral. We can solve this using trigonometric substitution. Let u=tanθu = \tan \theta. Then du=sec2θdθdu = \sec^2 \theta \, d\theta. Also, u2+1=tan2θ+1=sec2θu^2+1 = \tan^2 \theta + 1 = \sec^2 \theta.

The integral becomes sec2θdθ(sec2θ)2=sec2θsec4θdθ=1sec2θdθ=cos2θdθ\int \frac{\sec^2 \theta \, d\theta}{(\sec^2 \theta)^2} = \int \frac{\sec^2 \theta}{\sec^4 \theta} \, d\theta = \int \frac{1}{\sec^2 \theta} \, d\theta = \int \cos^2 \theta \, d\theta.

Using the identity cos2θ=1+cos(2θ)2\cos^2 \theta = \frac{1+\cos(2\theta)}{2}, the integral is: 1+cos(2θ)2dθ=12(1+cos(2θ))dθ=12(θ+12sin(2θ))+C=12θ+14sin(2θ)+C\int \frac{1+\cos(2\theta)}{2} \, d\theta = \frac{1}{2} \int (1+\cos(2\theta)) \, d\theta = \frac{1}{2} \left( \theta + \frac{1}{2} \sin(2\theta) \right) + C = \frac{1}{2} \theta + \frac{1}{4} \sin(2\theta) + C.

Now, we express this in terms of uu. Since u=tanθu = \tan \theta, we have θ=arctan(u)\theta = \arctan(u). For sin(2θ)\sin(2\theta), we use sin(2θ)=2sinθcosθ\sin(2\theta) = 2 \sin \theta \cos \theta. From u=tanθ=u1u = \tan \theta = \frac{u}{1}, we can form a right triangle with opposite side uu and adjacent side 11. The hypotenuse is u2+1\sqrt{u^2+1}. So, sinθ=uu2+1\sin \theta = \frac{u}{\sqrt{u^2+1}} and cosθ=1u2+1\cos \theta = \frac{1}{\sqrt{u^2+1}}. sin(2θ)=2(uu2+1)(1u2+1)=2uu2+1\sin(2\theta) = 2 \left( \frac{u}{\sqrt{u^2+1}} \right) \left( \frac{1}{\sqrt{u^2+1}} \right) = \frac{2u}{u^2+1}.

Substituting back: 12arctan(u)+14(2uu2+1)+C=12arctan(u)+u2(u2+1)+C\frac{1}{2} \arctan(u) + \frac{1}{4} \left( \frac{2u}{u^2+1} \right) + C = \frac{1}{2} \arctan(u) + \frac{u}{2(u^2+1)} + C.

Finally, substitute back u=x+2u = x+2: 12arctan(x+2)+x+22((x+2)2+1)+C=12arctan(x+2)+x+22(x2+4x+5)+C\frac{1}{2} \arctan(x+2) + \frac{x+2}{2((x+2)^2+1)} + C = \frac{1}{2} \arctan(x+2) + \frac{x+2}{2(x^2+4x+5)} + C.

Thus, the indefinite integral is x+22(x2+4x+5)+12arctan(x+2)+C\frac{x+2}{2(x^2+4x+5)} + \frac{1}{2} \arctan(x+2) + C.