Solveeit Logo

Question

Mathematics Question on coordinates of a point in space

The incentre of the triangle with vertices (1,3),(0,0)(1, \sqrt{3}), (0,0) and (2,0)is(2,0) is

A

(1,32)\Big(1, \frac{\sqrt{3}}{2}\Big)

B

(2313)\Big(\frac{2}{3} \frac{1}{\sqrt{3}}\Big)

C

(2332)\Big(\frac{2}{3} \frac{\sqrt{3}}{2}\Big)

D

(1,13)\Big(1,\frac{1}{\sqrt{3}}\Big)

Answer

(1,13)\Big(1,\frac{1}{\sqrt{3}}\Big)

Explanation

Solution

Let the vertices of triangle be A(1,3),5(0.0)A(1, \sqrt{3}), 5(0.0) and C(2,0)C(2,0). Here, AB=BC=CA=2AB = BC = CA=2
Therefore, it is an equilateral triangle. So, the in centre coincides with centroid.
\therefore \hspace25mm I\equiv \Bigg(\frac{0 + 1 + 2}{3},\frac{0+0+\sqrt{3}}{3}\Bigg)
\Rightarrow \hspace25mm I \equiv(1/\sqrt{3})