Solveeit Logo

Question

Question: The incentre of a triangle with vertices (7, 1) (–1, 5) and \((3 + 2\sqrt{3},3 + 4\sqrt{3})\) is....

The incentre of a triangle with vertices (7, 1) (–1, 5) and (3+23,3+43)(3 + 2\sqrt{3},3 + 4\sqrt{3}) is.

A

(3+23,3+43)\left( 3 + \frac{2}{\sqrt{3}},3 + \frac{4}{\sqrt{3}} \right)

B

(1+233,1+433)\left( 1 + \frac{2}{3\sqrt{3}},1 + \frac{4}{3\sqrt{3}} \right)

C

(7, 1)

D

None of these

Answer

(3+23,3+43)\left( 3 + \frac{2}{\sqrt{3}},3 + \frac{4}{\sqrt{3}} \right)

Explanation

Solution

AB=BC=CA=45\because A B = B C = C A = 4 \sqrt { 5 } ,

i.e., given triangle is equilateral.

(In centre of a triangle are same as the centriod when triangle is equilateral)

Hence, incentre

= (71+3+233,1+5+3+433)\left( \frac { 7 - 1 + 3 + 2 \sqrt { 3 } } { 3 } , \frac { 1 + 5 + 3 + 4 \sqrt { 3 } } { 3 } \right)

=(3+23,3+43)= \left( 3 + \frac { 2 } { \sqrt { 3 } } , 3 + \frac { 4 } { \sqrt { 3 } } \right).