Question
Question: The improper integral \(\int_{0}^{\infty}{e^{- x}dx}\) is …… and the value is…....
The improper integral ∫0∞e−xdx is …… and the value is….
A
Convergent, 1
B
Divergent, 1
C
Convergent, 0
D
Divergent, 0
Answer
Convergent, 1
Explanation
Solution
I=∫0∞e−xdx=limk→∞∫0ke−xdx ⇒ I=limk→∞[−e−x]0k=limk→∞[−e−k+e0] ⇒I=limk→∞(1−e−k)=1−0=1[∵limk→∞e−k=e−∞=0] Thus, limk→∞∫0ke−xdx exists and is finite. Hence the given integral is convergent.