Solveeit Logo

Question

Question: The improper integral \(\int_{0}^{\infty}{e^{- x}dx}\) is …… and the value is…....

The improper integral 0exdx\int_{0}^{\infty}{e^{- x}dx} is …… and the value is….

A

Convergent, 1

B

Divergent, 1

C

Convergent, 0

D

Divergent, 0

Answer

Convergent, 1

Explanation

Solution

I=0exdx=limk0kexdxI = \int_{0}^{\infty}{e^{- x}dx = \lim_{k \rightarrow \infty}\int_{0}^{k}{e^{- x}dx}}I=limk[ex]0k=limk[ek+e0]I = \lim_{k \rightarrow \infty}\lbrack - e^{- x}\rbrack_{0}^{k} = \lim_{k \rightarrow \infty}\lbrack - e^{- k} + e^{0}\rbrackI=limk(1ek)=10=1[limkek=e=0]I = \lim_{k \rightarrow \infty}(1 - e^{- k}) = 1 - 0 = 1\lbrack\because\lim_{k \rightarrow \infty}e^{- k} = e^{- \infty} = 0\rbrack Thus, limk0kexdx\lim_{k \rightarrow \infty}\int_{0}^{k}{e^{- x}dx} exists and is finite. Hence the given integral is convergent.