Solveeit Logo

Question

Question: The image of the point having the position vector <img src="https://cdn.pureessence.tech/canvas_650....

The image of the point having the position vector in the plane r\overrightarrow { \mathbf { r } } . + 3 = 0 is

A

3i^5j^+2k^3\widehat{i} - 5\widehat{j} + 2\widehat{k}

B

3i^5j^+4k^3\widehat{i} - 5\widehat{j} + 4\widehat{k}

C

3i^+5j^+2k^- 3\widehat{i} + 5\widehat{j} + 2\widehat{k}

D

3i^+5j^+4k^3\widehat{i} + 5\widehat{j} + 4\widehat{k}

Answer

3i^+5j^+2k^- 3\widehat{i} + 5\widehat{j} + 2\widehat{k}

Explanation

Solution

Equation of line passing through given point P and normal to given plane is

= (i^+3j^+4k^)( \hat { \mathrm { i } } + 3 \hat { \mathrm { j } } + 4 \hat { \mathrm { k } } ) + l

Ž Image point Q

ŗ((1+2λ)i^+(3λ)j^+(4+λ)k^)( ( 1 + 2 \lambda ) \hat { i } + ( 3 - \lambda ) \hat { j } + ( 4 + \lambda ) \hat { k } )

Now mid point of PQ ŗ

satisfies given plane that gives l = –2

So position vector of image is