Solveeit Logo

Question

Mathematics Question on coordinates of a point in space

The image of the point (6,3,9)(6,3,9) in the straight line x2=1y2=z2x-2=\frac{1-y}{2}=\frac{z}{2} is

A

(289,839,119)\left( \frac{28}{9},\frac{83}{9},\frac{11}{9} \right)

B

(28,83,11)(28,83,11)

C

(4,3,4)(4,-3,4)

D

(2,9,1)(2,-9,-1)

Answer

(2,9,1)(2,-9,-1)

Explanation

Solution

Given equation of line is
x21=y12=z02=k\frac{x-2}{1}=\frac{y-1}{-2}=\frac{z-0}{2}=k [say]
Any point on the line is Q(k+2,2k+1,2k)Q(k+2,\,\,-2k+1,2k)
Direction ratios of PQ are
(k+26,2k+13,2k9)(k+2-6,-2k+1-3,2k-9) ie, (k4,2k2,2k9),(k-4,\,-2k-2,\,2k-9),
Since, the line PQPQ is perpendicular to ABAB .
\therefore 1(k4)2(2k2)+2(2k9)=01(k-4)-2(-2k-2)+2(2k-9)=0
\Rightarrow k4+4k+4+4k18=0k-4+4k+4+4k-18=0
\Rightarrow 9k=189\,k=18
\Rightarrow k=2k=2
\therefore Point Q is (4,3,4)(4,-3,4) .
Let the image of P about line AB is
R(x1,y1,z1),R({{x}_{1}},{{y}_{1}},{{z}_{1}}),
Where Q is the mid point of PR.
\therefore x1+62=4,y1+32=3,z1+92=4\frac{{{x}_{1}}+6}{2}=4,\,\frac{{{y}_{1}}+3}{2}=-3,\,\frac{{{z}_{1}}+9}{2}=4
\Rightarrow x1=2,y1=9,z1=1{{x}_{1}}=2,\,{{y}_{1}}=-9,\,{{z}_{1}}=-1