Solveeit Logo

Question

Question: The image of the point (1, 6, 3) in the line \(\frac { x } { 1 } = \frac { y - 1 } { 2 } = \frac { ...

The image of the point (1, 6, 3) in the line x1=y12=z23\frac { x } { 1 } = \frac { y - 1 } { 2 } = \frac { z - 2 } { 3 } is

A

(1, 0, 7)

B

(–1, 0, 7)

C

(1, 0, –7)

D

None of these

Answer

(1, 0, 7)

Explanation

Solution

Let P(1, 6, 3) be the given point, and let L be the foot of the perpendicular from P to the given line. The co-ordinates of a general point on the given line are given by

x01=y12=z23=λ\frac { x - 0 } { 1 } = \frac { y - 1 } { 2 } = \frac { z - 2 } { 3 } = \lambda

i.e. x=λ,y=2λ+1,z=3λ+2x = \lambda , y = 2 \lambda + 1 , z = 3 \lambda + 2.

Let the co-ordinates of L be (λ, 2λ + 1, 3λ + 2) ……(i)

So, direction ratios of PL are λ1,2λ+16,3λ+23\lambda - 1,2 \lambda + 1 - 6,3 \lambda + 2 - 3

i.e. λ1,2λ5,3λ1\lambda - 1,2 \lambda - 5,3 \lambda - 1 .

Direction ratios of the given line are 1, 2, 3 which is perpendicular to PL.

(λ1)1+(2λ5)2+(3λ1)3=0( \lambda - 1 ) \cdot 1 + ( 2 \lambda - 5 ) 2 + ( 3 \lambda - 1 ) 3 = 014λ14=014 \lambda - 14 = 0

λ=1\lambda = 1

So, co-ordinates of L are (1, 3, 5). Let Q(x1,y1,z1)Q \left( x _ { 1 } , y _ { 1 } , z _ { 1 } \right) be the

image of P(1,6,3)P ( 1,6,3 ) in the given line.

Then L is the mid-point of PQ.

x1+12=1,y1+62=3\frac { x _ { 1 } + 1 } { 2 } = 1 , \frac { y _ { 1 } + 6 } { 2 } = 3 and z1+32=5\frac { z _ { 1 } + 3 } { 2 } = 5

x1=1,y1=0x _ { 1 } = 1 , y _ { 1 } = 0 and z1=7z _ { 1 } = 7.

Hence the image of P(1, 6, 3) in the given line is (1, 0, 7).