Solveeit Logo

Question

Mathematics Question on Equation of a Line in Space

The image of the line x13=y31=z45\frac{x-1}{3}=\frac{y-3}{1}=\frac{z-4}{-5} in the plane 2xy+z+3=02 x - y + z+ 3 = 0 is the line.

A

x+33=y51=z25\frac{x+3}{3}=\frac{y-5}{1}=\frac{z-2}{-5}

B

x+33=y51=z+25\frac{x+3}{-3}=\frac{y-5}{-1}=\frac{z+2}{5}

C

x33=y+51=z25\frac{x-3}{3}=\frac{y+5}{1}=\frac{z-2}{-5}

D

x33=y+51=z25\frac{x-3}{-3}=\frac{y+5}{-1}=\frac{z-2}{5}

Answer

x+33=y51=z25\frac{x+3}{3}=\frac{y-5}{1}=\frac{z-2}{-5}

Explanation

Solution

a12=b31=c41=λ\frac{a-1}{2}=\frac{b-3}{-1}=\frac{c-4}{1}=\lambda a=2λ+1\Rightarrow a=2 \lambda+1 b=3λb=3-\lambda c=4+λc=4+\lambda P(λ+1,3λ2,4+λ2)P \equiv\left(\lambda+1,3-\frac{\lambda}{2}, 4+\frac{\lambda}{2}\right) 2(λ+1)(3λ2)+(4+λ2)+3=02(\lambda+1)-\left(3-\frac{\lambda}{2}\right)+\left(4+\frac{\lambda}{2}\right)+3=0 2λ+23+λ2+4+λ2+3=02 \lambda+2-3+\frac{\lambda}{2}+4+\frac{\lambda}{2}+3=0 3λ+6=03 \lambda+6=0 λ=2 \Rightarrow\, \lambda=-2 a=3,b=5,c=2a=-3, \,b=5, \,c=2 So the equation of the required line is x+33=y51=z25\frac{x+3}{3}=\frac{y-5}{1}=\frac{z-2}{-5}