Solveeit Logo

Question

Mathematics Question on Transpose of a Matrix

The identity element in the group M = \left\\{ \begin{bmatrix} x & x \\\ x & x\\\ \end{bmatrix} | x \ \in \ R, x \neq 0 \right\\} with respect to matrix multiplication is

A

[11\11]\begin{bmatrix}1 & 1 \\\1 & 1\\\\\end{bmatrix}

B

12[11 11 ]\frac {1} {2} \begin{bmatrix} 1 & 1 \\\ 1 & 1\\\ \end{bmatrix}

C

[10\01 ]\begin{bmatrix}1 & 0 \\\0 & 1\\\ \end{bmatrix}

D

[01\10]\begin{bmatrix}0 & 1 \\\1 & 0\\\\\end{bmatrix}

Answer

12[11 11 ]\frac {1} {2} \begin{bmatrix} 1 & 1 \\\ 1 & 1\\\ \end{bmatrix}

Explanation

Solution

M=[xx xx],xRM=\begin{bmatrix}x & x \\\ x & x\end{bmatrix}, \forall x \in R and x0x \neq 0
Let PP be the identity element in the group
i.e. P=[1212 1212]=12[11 11]P=\begin{bmatrix}\frac{1}{2} & \frac{1}{2} \\\ \frac{1}{2} & \frac{1}{2}\end{bmatrix}=\frac{1}{2}\begin{bmatrix}1 & 1 \\\ 1 & 1\end{bmatrix}
PP is obtained by putting x=12x=\frac{1}{2}
MP=[xx xx][1212 1212]=M\therefore \, M P=\begin{bmatrix}x & x \\\ x & x\end{bmatrix}\begin{bmatrix}\frac{1}{2} & \frac{1}{2} \\\ \frac{1}{2} & \frac{1}{2}\end{bmatrix}=M
and PM=[1212 1212][xx xx]=MPM=\begin{bmatrix}\frac{1}{2} & \frac{1}{2} \\\ \frac{1}{2} & \frac{1}{2}\end{bmatrix}\begin{bmatrix}x & x \\\ x & x\end{bmatrix}=M
MP=M=PM\therefore\, M P=M=P M