Solveeit Logo

Question

Question: The hyperbolic cosine function \[\cosh \left( x \right)\] is defined as \[\cosh \left( x \right) = \...

The hyperbolic cosine function cosh(x)\cosh \left( x \right) is defined as cosh(x)=ex+ex2\cosh \left( x \right) = \dfrac{{{e^x} + {e^{ - x}}}}{2}. Find the arc length of cosh(x)\cosh \left( x \right) on the interval [ln2,ln2]\left[ { - \ln 2,\ln 2} \right].

Explanation

Solution

First find the derivative of the given function and after that use the arc length formula S=ab1+(dydx)2dxS = \int_a^b {\sqrt {1 + {{\left( {\dfrac{{dy}}{{dx}}} \right)}^2}} dx} , substitute the obtained values in it and find the integral value. The interval is given as [ln2,ln2]\left[ { - \ln 2,\ln 2} \right] which is the limit of the integral [a,b]\left[ {a,b} \right].

Consider step by step solution
Consider the given function y=coshxy = \cosh x which is further defined as the cosh(x)=ex+ex2\cosh \left( x \right) = \dfrac{{{e^x} + {e^{ - x}}}}{2}.
Now, find the derivative of the given function with respect to xx.
Thus, we get that,
dydx=sinhx\dfrac{{dy}}{{dx}} = \sinh x
Thus, substitute the value in the formula of the arc length that is S=ab1+(dydx)2dxS = \int_a^b {\sqrt {1 + {{\left( {\dfrac{{dy}}{{dx}}} \right)}^2}} dx}
From this, we get that,
S=ab1+(sinhx)2dx\Rightarrow S = \int_a^b {\sqrt {1 + {{\left( {\sinh x} \right)}^2}} dx}
As we know the trigonometric identity that 1+sinh2x=cosh2x1 + {\sinh ^2}x = {\cosh ^2}x. So, we will apply it here and simplify the value.

S=abcosh2xdx S=abcoshxdx  \Rightarrow S = \int_a^b {\sqrt {{{\cosh }^2}x} dx} \\\ \Rightarrow S = \int_a^b {\cosh xdx} \\\

Now, apply the limits given in the question, that is [ln2,ln2]\left[ { - \ln 2,\ln 2} \right].
S=ln2ln2coshxdx\Rightarrow S = \int_{ - \ln 2}^{\ln 2} {\cosh xdx}
Now, as we see here that the limits are symmetric so we can take the limits as [0,ln2]\left[ {0,\ln 2} \right] and multiply with 2 and integration of coshx=sinhx\cosh x = \sinh x

S=20ln2coshxdx S=2[sinhx]0ln2  \Rightarrow S = 2\int_0^{\ln 2} {\cosh xdx} \\\ \Rightarrow S = 2\left[ {\sinh x} \right]_0^{\ln 2} \\\

Now, we are given that y=coshxy = \cosh x is defined as the cosh(x)=ex+ex2\cosh \left( x \right) = \dfrac{{{e^x} + {e^{ - x}}}}{2}. Similarly, we know that y=sinhxy = \sinh x is defined as thesinh(x)=exex2\sinh \left( x \right) = \dfrac{{{e^x} - {e^{ - x}}}}{2}.
Substitute the value of sinh(x)=exex2\sinh \left( x \right) = \dfrac{{{e^x} - {e^{ - x}}}}{2} in the integral part.
Thus, we get,

S=2[exex2]0ln2 S=2[eln2eln22e0e02] S=2[(2122)(112)] S=2[3220] S=2[34] S=32  \Rightarrow S = 2\left[ {\dfrac{{{e^x} - {e^{ - x}}}}{2}} \right]_0^{\ln 2} \\\ \Rightarrow S = 2\left[ {\dfrac{{{e^{\ln 2}} - {e^{ - \ln 2}}}}{2} - \dfrac{{{e^0} - {e^{ - 0}}}}{2}} \right] \\\ \Rightarrow S = 2\left[ {\left( {\dfrac{{2 - \dfrac{1}{2}}}{2}} \right) - \left( {\dfrac{{1 - 1}}{2}} \right)} \right] \\\ \Rightarrow S = 2\left[ {\dfrac{{\dfrac{3}{2}}}{2} - 0} \right] \\\ \Rightarrow S = 2\left[ {\dfrac{3}{4}} \right] \\\ \Rightarrow S = \dfrac{3}{2} \\\

Thus, the arc length of the given function y=cosh(x)y = \cosh \left( x \right) is 32\dfrac{3}{2}.
Note: We have used the logarithm or exponent rules which states that elnx=x{e^{\ln x}} = x and elnx=1x{e^{ - \ln x}} = \dfrac{1}{x}.
Also, values of e0=1{e^0} = 1 and e0=1{e^{ - 0}} = 1. The derivative of coshx=sinhx\cosh x = \sinh x and integration of sinhx=coshx\sinh x = \cosh x. As the given interval is symmetric, we can divide it into half and the interval get changes into [0,ln2]\left[ {0,\ln 2} \right]. Also use the identity 1+sinh2x=cosh2x1 + {\sinh ^2}x = {\cosh ^2}x which makes the calculation easier.