Solveeit Logo

Question

Physics Question on projectile motion

The horizontal range and the maximum height of a projectile are equal. The angle of projection of the projectile is

A

θ=tan1(14) \theta = \tan^{ - 1} \bigg( \frac{1}{ 4} \bigg)

B

θ=tan1(4) \theta = \tan^{ - 1} ( 4 )

C

θ=tan1(2) \theta = \tan^{ - 1} (2)

D

θ=45 \theta = 45^\circ

Answer

θ=tan1(4) \theta = \tan^{ - 1} ( 4 )

Explanation

Solution

Horizontal range, R = u2 sin 2θg\frac{ u^2 \ \sin \ 2 \theta }{ g} where u is the velocity of projection and θ\theta is the angle of projection Maximum height, H = u2sin2θ2g\frac{ u^2\, \sin^2\,\theta }{2g} According to question R = H u2sin 2 θg=u2sin2θ2g\therefore \frac{ u^2 \sin\ 2 \ \theta }{g} = \frac{ u^2 \, \sin^2 \, \theta }{2g} 2u2sinθcosθg=u2sin2θ2g\frac{2 u^2 \, \sin \theta \,cos\, \theta }{ g} = \frac{ u^2 \, \sin^2\, \theta }{ 2g} tanθ=4\tan \theta = 4 or θ=tan1(4)\theta = \tan^{ - 1} (4)