Solveeit Logo

Question

Question: The Henry's law constant for the solubility of \(\text{ }{{\text{N}}_{\text{2}}}\text{ }\) a gas in ...

The Henry's law constant for the solubility of  N2 \text{ }{{\text{N}}_{\text{2}}}\text{ } a gas in water at  298K \text{ 298K }is 1.0×105 atm \text{ 1}\text{.0}\times \text{1}{{\text{0}}^{\text{5}}}\text{ atm }. The mole fraction of  N2 \text{ }{{\text{N}}_{\text{2}}}\text{ } in air is 0.8 \text{ 0}\text{.8 }. The number of moles of  N2 \text{ }{{\text{N}}_{\text{2}}}\text{ } from air dissolved in 10 moles of water at  298K \text{ 298K } and 5 atm\text{5 atm} pressure is:
A)  4.0 ×104 \text{ 4}\text{.0 }\times \text{1}{{\text{0}}^{-4}}\text{ }
B)  4.0 ×105 \text{ 4}\text{.0 }\times \text{1}{{\text{0}}^{-5}}\text{ }
C)  5.0 ×104 \text{ 5}\text{.0 }\times \text{1}{{\text{0}}^{-4}}\text{ }
D)  4.0 ×106 \text{ 4}\text{.0 }\times \text{1}{{\text{0}}^{-6}}\text{ }

Explanation

Solution

The pressure has a remarkable effect on the solubility of the gas. The relation between the partial pressure and mole fraction of a gas solute is given as,
 p2 = kχ2 \text{ }{{\text{p}}_{\text{2}}}\text{ = k}{{\chi }_{2}}\text{ }
Where χ2{{\chi }_{2}}the mole fraction of solute, and subscript 2 is used for the gas solute. The k is called Henry’s law constant. For a mixture of gases, henry’s law is applicable for each gas independent of the presence of the other gases.

Complete answer:
The solubility of gases at a given temperature increases directly as the pressure. This conclusion forms a basis of what is known as Henry’s law, which may be stated as below,
The mass of a gas dissolved per unit volume of a solvent is proportional to the pressure of the gas in equilibrium with the solution at a constant temperature.
The henry law can be alternatively stated as the pressure of the gas over the solution in which the gas is dissolved is proportional to the mole fraction of the gas dissolved in solution. That is,
 p2 = kχ2 \text{ }{{\text{p}}_{\text{2}}}\text{ = k}{{\chi }_{2}}\text{ } ………………………..(1)
Where  χ2 \text{ }{{\chi }_{2}}\text{ } the mole fraction of solute and subscript 2 is used for the gas solute.
We have given the following data:
The henry law constant k is,  1.0×105 atm \text{ 1}\text{.0}\times \text{1}{{\text{0}}^{\text{5}}}\text{ atm }
Mole fraction of  N2 \text{ }{{\text{N}}_{\text{2}}}\text{ } in water is,  χN2= 0.8 \text{ }{{\chi }_{{{\text{N}}_{\text{2}}}}}=\text{ 0}\text{.8 }
The number of moles of water,  nH2= 10 mole \text{ }{{\text{n}}_{{{\text{H}}_{\text{2}}}\text{O }}}\text{= 10 mole }
The pressure of a gas is,  P = 5 atm \text{ P = 5 atm }
To find, the number of moles of nitrogen  nN2 \text{ }{{\text{n}}_{{{\text{N}}_{\text{2}}}}}\text{ }
The partial pressure of the nitrogen gas is,
 p2 = PTotal χ2 = 5 atm × 0.8 = 4 atm \text{ }{{\text{p}}_{\text{2}}}\text{ = }{{\text{P}}_{\text{Total}}}\text{ }{{\chi }_{\text{2}}}\text{ = 5 atm }\times \text{ 0}\text{.8 = 4 atm }
Now, substitute the value of partial pressure in (1), henry law, we have,
 p2 = kχ2  χ2 = p2k = 4 atm1×105atm = 4 ×105  \begin{aligned} & \text{ }{{\text{p}}_{\text{2}}}\text{ = k}{{\chi }_{2}}\text{ } \\\ & \Rightarrow {{\chi }_{2}}\text{ = }\dfrac{{{\text{p}}_{\text{2}}}}{\text{k}}\text{ = }\dfrac{4\text{ atm}}{1\times {{10}^{5}}\text{atm}}\text{ = }4\text{ }\times {{10}^{-5}}\text{ } \\\ \end{aligned}
Now, we know that the mole fraction for the gas solute is written as follows,
 χ2 = n2n1+n2  n2n1 \text{ }{{\chi }_{2}}\text{ = }\dfrac{{{n}_{2}}}{{{n}_{1}}+{{n}_{2}}}\text{ }\approx \text{ }\dfrac{{{n}_{2}}}{{{n}_{1}}}\text{ }
Because we are assuming that the number of moles of gas like  N2 \text{ }{{\text{N}}_{\text{2}}}\text{ }is negligible in comparison with the moles of the solvent.
Let's find out the number of moles of nitrogen N2 \text{ }{{\text{N}}_{\text{2}}}\text{ }.
 χN2 = nN2nH2O  nN2=χN2 × nH2O nN2= 4 ×105×10 nN2 = 4×104 mol \begin{aligned} & \text{ }{{\chi }_{{{\text{N}}_{\text{2}}}}}\text{ = }\dfrac{{{n}_{{{\text{N}}_{\text{2}}}}}}{{{n}_{{{\text{H}}_{\text{2}}}\text{O}}}}\text{ } \\\ & \Rightarrow {{n}_{{{\text{N}}_{\text{2}}}}}={{\chi }_{{{\text{N}}_{\text{2}}}}}\text{ }\times \text{ }{{n}_{{{\text{H}}_{\text{2}}}\text{O}}} \\\ & \Rightarrow {{n}_{{{\text{N}}_{\text{2}}}}}=\text{ 4 }\times \text{1}{{\text{0}}^{-5}}\times 10 \\\ & \therefore {{n}_{{{\text{N}}_{\text{2}}}}}\text{ = 4}\times \text{1}{{\text{0}}^{-4}}\text{ mol} \\\ \end{aligned}
Therefore, the number of moles of nitrogen gas are equal to 4×104 mol\text{ 4}\times \text{1}{{\text{0}}^{-4}}\text{ mol}.

Hence, (A) is the correct option.

Note:
Henry's law is also written in terms of the mass of gas. If m is the mass of the gas dissolved per unit volume of as solvent and P is the pressure of the gas in equilibrium with the solution, then at a constant temperature the Henry law can be written as,
 m  P or m = kP \text{ m }\propto \text{ P or m = kP }
Note that, if in any solution, the solute obeys Henry’s law within a certain range of concentration, the solvent obeys the Raoult’s law over the same range of concentration.