Solveeit Logo

Question

Question: The heat generated in a coil of resistance $R$ due to charge $q$ passing through it is $H_1$ when cu...

The heat generated in a coil of resistance RR due to charge qq passing through it is H1H_1 when current in the coil decreases down to zero uniformly in time interval Δt\Delta t and H2H_2 when current in the coil decreases down to zero such that current continuously becomes half after each interval of time Δt\Delta t. Then H2H1\frac{H_2}{H_1} is

A

ln(8)8\frac{ln(8)}{8}

B

ln(5)3\frac{ln(5)}{3}

C

ln(10)5\frac{ln(10)}{5}

D

ln(6)8\frac{ln(6)}{8}

Answer

ln(8)8\frac{ln(8)}{8}

Explanation

Solution

To determine the ratio H2H1\frac{H_2}{H_1}, we need to calculate the heat generated in two different scenarios. The heat generated in a coil of resistance RR is given by H=I2RdtH = \int I^2 R dt, and the total charge passing through the coil is q=Idtq = \int I dt.

Scenario 1: H1H_1 - Current decreases uniformly down to zero in time interval Δt\Delta t.

Let the initial current at t=0t=0 be I0I_0. Since the current decreases uniformly to zero in time Δt\Delta t, the current as a function of time is given by: I(t)=I0(1tΔt)I(t) = I_0 \left(1 - \frac{t}{\Delta t}\right) for 0tΔt0 \le t \le \Delta t.

The total charge qq is the area under the I(t)I(t) vs tt graph, which is a triangle: q=12×base×height=12×Δt×I0q = \frac{1}{2} \times \text{base} \times \text{height} = \frac{1}{2} \times \Delta t \times I_0. From this, the initial current I0=2qΔtI_0 = \frac{2q}{\Delta t}.

Now, we calculate H1H_1: H1=0ΔtRI(t)2dt=R0Δt[2qΔt(1tΔt)]2dtH_1 = \int_0^{\Delta t} R I(t)^2 dt = R \int_0^{\Delta t} \left[ \frac{2q}{\Delta t} \left(1 - \frac{t}{\Delta t}\right) \right]^2 dt H1=R4q2(Δt)20Δt(1tΔt)2dtH_1 = R \frac{4q^2}{(\Delta t)^2} \int_0^{\Delta t} \left(1 - \frac{t}{\Delta t}\right)^2 dt.

To solve the integral, let u=1tΔtu = 1 - \frac{t}{\Delta t}. Then du=1Δtdtdu = -\frac{1}{\Delta t} dt, so dt=Δtdudt = -\Delta t du. When t=0t=0, u=1u=1. When t=Δtt=\Delta t, u=0u=0. The integral becomes: 10u2(Δtdu)=Δt10u2du=Δt01u2du=Δt[u33]01=Δt×13=Δt3\int_1^0 u^2 (-\Delta t du) = -\Delta t \int_1^0 u^2 du = \Delta t \int_0^1 u^2 du = \Delta t \left[ \frac{u^3}{3} \right]_0^1 = \Delta t \times \frac{1}{3} = \frac{\Delta t}{3}.

Substitute this back into the expression for H1H_1: H1=R4q2(Δt)2×Δt3=4q2R3ΔtH_1 = R \frac{4q^2}{(\Delta t)^2} \times \frac{\Delta t}{3} = \frac{4q^2 R}{3\Delta t}.

Scenario 2: H2H_2 - Current continuously becomes half after each interval of time Δt\Delta t.

This implies an exponential decay of the current. Let I(t)=I0ektI(t) = I'_0 e^{-kt}. The condition "current continuously becomes half after each interval of time Δt\Delta t" means I(t+Δt)=12I(t)I(t+\Delta t) = \frac{1}{2} I(t). I0ek(t+Δt)=12I0ektI'_0 e^{-k(t+\Delta t)} = \frac{1}{2} I'_0 e^{-kt} ekΔt=12e^{-k\Delta t} = \frac{1}{2} kΔt=ln(12)=ln(2)-k\Delta t = \ln\left(\frac{1}{2}\right) = -\ln(2) So, k=ln(2)Δtk = \frac{\ln(2)}{\Delta t}. The current is I(t)=I0eln(2)ΔttI(t) = I'_0 e^{-\frac{\ln(2)}{\Delta t} t}. The current approaches zero asymptotically, so the integration time is from t=0t=0 to t=t=\infty.

The total charge qq is: q=0I(t)dt=0I0eln(2)Δttdtq = \int_0^{\infty} I(t) dt = \int_0^{\infty} I'_0 e^{-\frac{\ln(2)}{\Delta t} t} dt. Let α=ln(2)Δt\alpha = \frac{\ln(2)}{\Delta t}. The integral is I00eαtdt=I0[1αeαt]0=I0(0(1α×1))=I0αI'_0 \int_0^{\infty} e^{-\alpha t} dt = I'_0 \left[ -\frac{1}{\alpha} e^{-\alpha t} \right]_0^{\infty} = I'_0 \left(0 - (-\frac{1}{\alpha} \times 1)\right) = \frac{I'_0}{\alpha}. So, q=I0Δtln(2)q = I'_0 \frac{\Delta t}{\ln(2)}, which gives I0=qln(2)ΔtI'_0 = \frac{q \ln(2)}{\Delta t}.

Now, we calculate H2H_2: H2=0RI(t)2dt=R0[qln(2)Δteln(2)Δtt]2dtH_2 = \int_0^{\infty} R I(t)^2 dt = R \int_0^{\infty} \left[ \frac{q \ln(2)}{\Delta t} e^{-\frac{\ln(2)}{\Delta t} t} \right]^2 dt H2=Rq2(ln(2))2(Δt)20e2ln(2)ΔttdtH_2 = R \frac{q^2 (\ln(2))^2}{(\Delta t)^2} \int_0^{\infty} e^{-2\frac{\ln(2)}{\Delta t} t} dt.

Let β=2ln(2)Δt\beta = 2\frac{\ln(2)}{\Delta t}. The integral is 0eβtdt=[1βeβt]0=1β\int_0^{\infty} e^{-\beta t} dt = \left[ -\frac{1}{\beta} e^{-\beta t} \right]_0^{\infty} = \frac{1}{\beta}. So, 0e2ln(2)Δttdt=12ln(2)Δt=Δt2ln(2)\int_0^{\infty} e^{-2\frac{\ln(2)}{\Delta t} t} dt = \frac{1}{2\frac{\ln(2)}{\Delta t}} = \frac{\Delta t}{2\ln(2)}.

Substitute this back into the expression for H2H_2: H2=Rq2(ln(2))2(Δt)2×Δt2ln(2)=q2(ln(2))R2ΔtH_2 = R \frac{q^2 (\ln(2))^2}{(\Delta t)^2} \times \frac{\Delta t}{2\ln(2)} = \frac{q^2 (\ln(2)) R}{2\Delta t}.

Calculate the ratio H2H1\frac{H_2}{H_1}: H2H1=q2(ln(2))R2Δt4q2R3Δt\frac{H_2}{H_1} = \frac{\frac{q^2 (\ln(2)) R}{2\Delta t}}{\frac{4q^2 R}{3\Delta t}}. Cancel out the common terms q2Rq^2 R and Δt\Delta t: H2H1=ln(2)243=ln(2)2×34=3ln(2)8\frac{H_2}{H_1} = \frac{\frac{\ln(2)}{2}}{\frac{4}{3}} = \frac{\ln(2)}{2} \times \frac{3}{4} = \frac{3\ln(2)}{8}.

Using the logarithm property aln(b)=ln(ba)a \ln(b) = \ln(b^a): 3ln(2)=ln(23)=ln(8)3\ln(2) = \ln(2^3) = \ln(8). Therefore, H2H1=ln(8)8\frac{H_2}{H_1} = \frac{\ln(8)}{8}.