Solveeit Logo

Question

Question: The harmonic mean of the roots of the equation \((5 + \sqrt{2})x^{2} - (4 + \sqrt{3})x + 8 + 2\sqrt...

The harmonic mean of the roots of the equation

(5+2)x2(4+3)x+8+23=0(5 + \sqrt{2})x^{2} - (4 + \sqrt{3})x + 8 + 2\sqrt{3} = 0 is

A

2

B

4

C

6

D

8

Answer

4

Explanation

Solution

Let α and β be the roots of the given equation

a+β=4+35+2a + \beta = \frac{4 + \sqrt{3}}{5 + \sqrt{2}}, αβ=8+235+2\alpha\beta = \frac{8 + 2\sqrt{3}}{5 + \sqrt{2}}

Hence, required harmonic mean

=2αβα+β=2(8+235+2)4+35+2=2(8+23)4+3=4(4+3)4+3=4= \frac{2\alpha\beta}{\alpha + \beta} = \frac{2\left( \frac{8 + 2\sqrt{3}}{5 + \sqrt{2}} \right)}{\frac{4 + \sqrt{3}}{5 + \sqrt{2}}} = \frac{2(8 + 2\sqrt{3})}{4 + \sqrt{3}} = \frac{4(4 + \sqrt{3})}{4 + \sqrt{3}} = 4