Solveeit Logo

Question

Chemistry Question on Chemical Kinetics

The half-life periods of a first order reaction at 300K300\, K and 400K400\, K are 50s50\, s and 10s10\, s respectively. The activation energy of the reaction in kJ  mol1kJ \; mol^{-1} is (log 5 = 0.70)

A

4

B

8

C

16.1

D

20.1

Answer

16.1

Explanation

Solution

Given, For first order reaction, (i) half-life (t1/2)\left(t_{1 / 2}\right) at temperature 300K=50s300\, K =50\, s (ii) half-life (t1/2)\left(t_{1 / 2}\right) at temperature 400K=10s400\, K =10\, s K1(\therefore K_{1}( at 300K)=0.69350=0.014s1300\, K )=\frac{0.693}{50}=0.014 \,s ^{-1} and K2(K_{2}( at 400K)=0.69310=0.07s1400 \,K )=\frac{0.693}{10}=0.07\, s ^{-1} [K=0.693/t(1/2)\left[\because K=0.693 / t_{(1 / 2)}\right. for lst order reaction ]] where, K1K_{1} and K2K_{2} are rate constant at 300K300 \,K and 400K400\, K respectively. Also, according to Arrhenius theory logK2K1=Ea2.303R[T2T1T1T2]\log \frac{K_{2}}{K_{1}}=\frac{E_{a}}{2.303 R}\left[\frac{T_{2}-T_{1}}{T_{1} \cdot T_{2}}\right] where, Ea=E_{a}= activation energy T1=T_{1} = temperature (300K)(300\, K ) T2=T_{2} = temperature (400K)(400\, K ) R=R = gas constant (8.314Jmol1)\left(8.314\, J \,mol ^{-1}\right) Thus, log0.070.014=Ea2.303×8.314[400300400×300]\log \frac{0.07}{0.014}=\frac{E_{a}}{2.303 \times 8.314}\left[\frac{400-300}{400 \times 300}\right] or, log5=Ea2.303×8.314[100400×300]\log\, 5=\frac{E_{a}}{2.303 \times 8.314}\left[\frac{100}{400 \times 300}\right] or, 0.70=Ea19.15×12000.70=\frac{E_{a}}{19.15 \times 1200} or, Ea=0.7×19.15×1200E_{a}=0.7 \times 19.15 \times 1200 =16086J=16086 \,J =16.08kJmol1=16.08 \,kJ \,mol ^{-1} Ea16.10kJmol1E_{a} \approx 16.10 \,kJ \,mol ^{-1}