Solveeit Logo

Question

Chemistry Question on Chemical Kinetics

The half life period of a radio active element is 3030 days, after 9090 days the following quantity will be left

A

18\frac{1}{8}

B

14\frac{1}{4}

C

12\frac{1}{2}

D

16\frac{1}{6}

Answer

18\frac{1}{8}

Explanation

Solution

All radioactive elements follow first order kinetics, Given, t1/2=30t_{1 / 2}=30 days \therefore Rate constant, k=0.693t1/2=0.69330k=\frac{0.693}{t_{1 / 2}}=\frac{0.693}{30} days 1^{-1} Now, as we know for first order reaction, k=2.303tlogaaxk=\frac{2.303}{t} \log \frac{a}{a-x} Here, t=90t =90 days, a=1a=1 0.69330=2.30390log11x\therefore \frac{0.693}{30} =\frac{2.303}{90} \log \frac{1}{1-x} or 0.9027=log11x0.9027=\log \frac{1}{1-x} Or 8=11x8=\frac{1}{1-x} 1x=18\therefore 1-x=\frac{1}{8} N=N02nN=\frac{N_{0}}{2^{n}} (where, n=n= number of half-life, N0=N_{0}= initial mass of radioactive element, N=N= final mass) N=N023\therefore N=\frac{N_{0}}{2^{3}} N=N08N=\frac{N_{0}}{8}