Solveeit Logo

Question

Physics Question on Nuclei

The half-life of thorium X is 3.64 days. After how many days will 0.1 of the mass of a sample of the substance remain undecayed?

A

12.1 days

B

24 days

C

60 days

D

4 days

Answer

12.1 days

Explanation

Solution

The decay constant is
λ=0.693T=0.6933.64=0.1904/day\lambda = \frac{0.693}{T} = \frac{0.693}{3.64} = 0.1904 / day
Also, N=N0eλtN = N_0 e^{- \lambda t}
Given, NN0=0.1=101\frac{N}{N_0} = 0.1 = 10^{-1}
101=eλt\therefore 10^{-1} = e ^{- \lambda t}
eλt=10\Rightarrow e^{\lambda t} = 10
 λt=loge10\ \lambda t = log_e 10
=2.3026×log1010= 2.3026 \times log_{10} 10
=2.3026×1= 2.3026 \times 1
t=2.3026×1λ=2.3026×10.1904=12.1days\therefore t = \frac{2.3026 \times 1}{\lambda} = \frac{2.3026 \times 1}{0.1904} = 12.1 \, days