Solveeit Logo

Question

Physics Question on deccay rate

The half-life of radium is 1620yr1620\, yr and its atomic weight is 226kg226\, kg per kilomol. The number of atoms that will decay from its 1g1\, g sample per second will be (Avogadro's number N=6.023×1023N=6.023 \times 10^{23} atoms/ molmol )

A

3.61×10103.61 \times 10^{10}

B

3.61×10123.61 \times 10^{12}

C

3.11×10153.11 \times 10^{15}

D

31.1×101531.1 \times 10^{15}

Answer

3.61×10103.61 \times 10^{10}

Explanation

Solution

From Rutherford Soddy law, the number of atoms that will decay is
dNdt=λN\frac{d N}{d t}=\lambda N ...(i)
Also, λ=0.693T1/2\lambda=\frac{0.693}{T_{1 / 2}} ...(ii)
where T1/2T_{1 / 2} is half-life of radioactive sample.
Given, T1/2=1620yrT_{1 / 2}=1620\, yr
=1620×365×24×60×60=1620 \times 365 \times 24 \times 60 \times 60
λ=0.6931620×365×24×60×60\therefore \lambda=\frac{0.693}{1620 \times 365 \times 24 \times 60 \times 60}
and N=6.023×1023226N=\frac{6.023 \times 10^{23}}{226}
Putting these values of NN and λ\lambda in E (i), we get
dNdt=0.693×6.023×10231620×365×24×60×60×226\frac{d N}{d t}=\frac{0.693 \times 6.023 \times 10^{23}}{1620 \times 365 \times 24 \times 60 \times 60 \times 226}
dNdt=3.61×1010\frac{d N}{d t}=3.61 \times 10^{10}