Solveeit Logo

Question

Question: The half-life of first order reaction is \(1.5\) hours. How much time is needed for 94% of the react...

The half-life of first order reaction is 1.51.5 hours. How much time is needed for 94% of the reactant to change to product?

Explanation

Solution

In the above question, the half life of first order reaction is given and we are asked about the time needed for 94% of the reactant to change to product. We can find the rate constant from the first order half life equation and put this value of rate constant in concentration after time t equation to get the desired time.

Formula Used-
t12 = 0.693k{{\text{t}}_{\dfrac{{\text{1}}}{{\text{2}}}}}{\text{ = }}\dfrac{{{\text{0}}{\text{.693}}}}{{\text{k}}}
where t12 = {{\text{t}}_{\dfrac{{\text{1}}}{{\text{2}}}}}{\text{ = }} half-life time.
k= rate constant
[A]t = [A]0.e - kt{{\text{[A]}}_{\text{t}}}{\text{ = [A}}{{\text{]}}_{\text{0}}}{\text{.}}{{\text{e}}^{{\text{ - kt}}}}
Where [A]t{{\text{[A]}}_{\text{t}}}= concentration of reactant after time t.
[A]0{{\text{[A]}}_{\text{0}}}=initial concentration
k= rate constant.

Complete step-by-step answer:
We know that half life is the time required for a substance to reduce to half of its concentration. In a first order reaction, the half life of the element is independent of the concentration of the element and is given by:
t12 = 0.693k{{\text{t}}_{\dfrac{{\text{1}}}{{\text{2}}}}}{\text{ = }}\dfrac{{{\text{0}}{\text{.693}}}}{{\text{k}}}
Rearranging it, we get:
k = 0.693t12{\text{k = }}\dfrac{{{\text{0}}{\text{.693}}}}{{{{\text{t}}_{\dfrac{{\text{1}}}{{\text{2}}}}}}}
Substituting the value, we get:
k = 0.693t12 = 0.6931.50 = 0.462h - 1{\text{k = }}\dfrac{{{\text{0}}{\text{.693}}}}{{{{\text{t}}_{\dfrac{{\text{1}}}{{\text{2}}}}}}}{\text{ = }}\dfrac{{{\text{0}}{\text{.693}}}}{{{\text{1}}{\text{.50}}}}{\text{ = 0}}{\text{.462}}{{\text{h}}^{{\text{ - 1}}}}
The second question asked is when the reactant will reduce it to 94%.
So, let at time t, reactant concentration ([A]t{{\text{[A]}}_{\text{t}}}) be (1 - 94100)[A]0 = 6[A]0100\left( {{\text{1 - }}\dfrac{{{\text{94}}}}{{{\text{100}}}}} \right){{\text{[A]}}_{\text{0}}}{\text{ = }}\dfrac{{{\text{6[A}}{{\text{]}}_{\text{0}}}}}{{{\text{100}}}}
We know that:
[A]t = [A]0.e - kt{{\text{[A]}}_{\text{t}}}{\text{ = [A}}{{\text{]}}_{\text{0}}}{\text{.}}{{\text{e}}^{{\text{ - kt}}}}
Substituting the value of [A]t{{\text{[A]}}_{\text{t}}}we get:
6[A]0100 = [A]0.e - kt\dfrac{{{\text{6[A}}{{\text{]}}_{\text{0}}}}}{{{\text{100}}}}{\text{ = [A}}{{\text{]}}_{\text{0}}}{\text{.}}{{\text{e}}^{{\text{ - kt}}}}
Or, 6100 = e - kt\dfrac{{\text{6}}}{{{\text{100}}}}{\text{ = }}{{\text{e}}^{{\text{ - kt}}}}
Taking ln on both the side of the equation, we get:
ln(6100) = ln(e - kt){\text{ln}}\left( {\dfrac{{\text{6}}}{{{\text{100}}}}} \right){\text{ = ln(}}{{\text{e}}^{{\text{ - kt}}}}{\text{)}}
Simplifying:
 - kt = ln(6) - ln(100){\text{ - kt = ln(6) - ln(100)}}
Substituting the value of k, we get:
0.462t=2.813- 0.462t = - 2.813
t =  - 2.813 - 0.462 = 6.08{\text{t = }}\dfrac{{{\text{ - 2}}{\text{.813}}}}{{{\text{ - 0}}{\text{.462}}}}{\text{ = 6}}{\text{.08}} hr
Hence,6.08{\text{6}}{\text{.08}} hour is needed for 94% of the reactant to change to product.

Note: The term half life is commonly used in nuclear physics to describe how quickly an unstable atom undergoes radioactive decay or how long stable atoms survive.