Solveeit Logo

Question

Question: The half-life of a sample of a radioactive substance is 1 hour. If \(8 \times 10^{10}\) atoms are pr...

The half-life of a sample of a radioactive substance is 1 hour. If 8×10108 \times 10^{10} atoms are present att=0t = 0, then the number of atoms decayed in the duration t=2t = 2 hour to t=4t = 4 hour will be.

A

2×10102 \times 10^{10}

B

1.5×10101.5 \times 10^{10}

C

Zero

D

Infinity

Answer

1.5×10101.5 \times 10^{10}

Explanation

Solution

N=N0(12)tT1l2N = N_{0}\left( \frac{1}{2} \right)^{\frac{t}{T_{1l2}}}

No of atoms at t = 2hr, N1=8×1010(12)21=2×1010N_{1} = 8 \times 10^{10}\left( \frac{1}{2} \right)^{\frac{2}{1}} = 2 \times 10^{10}

No. of atoms at t = 4hr, N2=8×1010(12)41=12×1010N_{2} = 8 \times 10^{10}\left( \frac{1}{2} \right)^{\frac{4}{1}} = \frac{1}{2} \times 10^{10}

∴ No. of atoms decayed in given duration

=(212)×1010=1.5×1010= \left( 2 - \frac{1}{2} \right) \times 10^{10} = 1.5 \times 10^{10}