Solveeit Logo

Question

Question: The half-life of a radioactive substance is 20 minutes. The approximate time interval \( \left( {{\t...

The half-life of a radioactive substance is 20 minutes. The approximate time interval (t2t1)\left( {{\text{t}}_{2}}-{{\text{t}}_{1}} \right) between time t1{{\text{t}}_{1}} when 13\dfrac{1}{3} of it had decayed and t2{{\text{t}}_{2}} when 23\dfrac{2}{3} of it had decayed is:
(A) 7 min
(B) 14 min
(C) 20 min
(D) 28 min

Explanation

Solution

The radioactivity formula is given by:
N=N0 e !!λ!! t\text{N}={{\text{N}}_{0}}\text{ }{{\text{e}}^{-\text{ }\\!\\!\lambda\\!\\!\text{ t}}}
Where N0{{\text{N}}_{0}} = initial substance at t = 0
N = substance left at time t
By substituting the given conditions in this equation, the answer can be calculated.

Complete step by step solution:
We know that the formula for radioactive decay is given by:
N=N0 e !!λ!! t\text{N}={{\text{N}}_{0}}\text{ }{{\text{e}}^{-\text{ }\\!\\!\lambda\\!\\!\text{ t}}} …… (1)
Now, in time t1,13{{\text{t}}_{1,}}\dfrac{1}{3} rd of the radioactive substance has been designed. So substance left is 113=23rd1-\dfrac{1}{3}=\dfrac{2}{3}\text{rd} .
So, N=23N0\text{N}=\dfrac{2}{3}{{\text{N}}_{0}}
Therefore, putting this value in equation (1), we get,
=23N0=N0 e !!λ!! t 23e !!λ!! t ln23= !!λ!! t1 2303 log23= !!λ!! t1 \begin{aligned} & =\dfrac{2}{3}{{\text{N}}_{0}}={{\text{N}}_{0}}\text{ }{{\text{e}}^{-\text{ }\\!\\!\lambda\\!\\!\text{ t}}} \\\ & \dfrac{2}{3}\text{= }{{\text{e}}^{-\text{ }\\!\\!\lambda\\!\\!\text{ t}}} \\\ & \text{ln}\dfrac{2}{3}=-\text{ }\\!\\!\lambda\\!\\!\text{ }{{\text{t}}_{1}} \\\ & 2\cdot 303\text{ log}\dfrac{2}{3}=-\text{ }\\!\\!\lambda\\!\\!\text{ }{{\text{t}}_{1}} \\\ \end{aligned}
t1=2303 log(23) !!λ!!  t1=040553817 !!λ!!  \begin{aligned} & {{\text{t}}_{1}}=\dfrac{-2\cdot 303\text{ log}\left( \dfrac{2}{3} \right)}{\text{ }\\!\\!\lambda\\!\\!\text{ }} \\\ & {{\text{t}}_{1}}=\dfrac{0\cdot 40553817}{\text{ }\\!\\!\lambda\\!\\!\text{ }} \\\ \end{aligned}
In time t2,23rd{{\text{t}}_{2,}}\dfrac{2}{3}\text{rd} of the radioactive substance has decayed. So, substance left is 123=13rd1-\dfrac{2}{3}=\dfrac{1}{3}\text{rd}
So, N=13N0\text{N}=\dfrac{1}{3}{{\text{N}}_{0}}
Therefore, putting this value in equation (1), we get
13N0=N0e !!λ!! t2\dfrac{1}{3}{{\text{N}}_{0}}={{\text{N}}_{0}}{{\text{e}}^{-\text{ }\\!\\!\lambda\\!\\!\text{ }{{\text{t}}_{2}}}}
13=e !!λ!! t2\dfrac{1}{3}={{\text{e}}^{-\text{ }\\!\\!\lambda\\!\\!\text{ }{{\text{t}}_{2}}}}
ln13 !!λ!! t2\text{ln}\dfrac{1}{3}-\text{ }\\!\\!\lambda\\!\\!\text{ }{{\text{t}}_{\text{2}}}
2303 log13= !!λ!! t22\cdot 303\text{ log}\dfrac{1}{3}=-\text{ }\\!\\!\lambda\\!\\!\text{ }{{\text{t}}_{2}}
t2=2303 log(13) !!λ!!  t2=109881025 !!λ!!  \begin{aligned} & {{\text{t}}_{2}}=\dfrac{-2\cdot 303\text{ log}\left( \dfrac{1}{3} \right)}{\text{ }\\!\\!\lambda\\!\\!\text{ }} \\\ & {{\text{t}}_{2}}=\dfrac{1\cdot 09881025}{\text{ }\\!\\!\lambda\\!\\!\text{ }} \\\ \end{aligned}
Now, t2t1=(109881025040553817) !!λ!! {{\text{t}}_{2}}-{{\text{t}}_{1}}=\dfrac{\left( 1\cdot 09881025-0\cdot 40553817 \right)}{\text{ }\\!\\!\lambda\\!\\!\text{ }}
t2t1=069327208 !!λ!! {{\text{t}}_{2}}-{{\text{t}}_{1}}=\dfrac{0\cdot 69327208}{\text{ }\\!\\!\lambda\\!\\!\text{ }} …. (2)
Now we know that half-life is given by
t2t1=0693 !!λ!! {{\text{t}}_{2}}-{{\text{t}}_{1}}=\dfrac{0\cdot 693}{\text{ }\\!\\!\lambda\\!\\!\text{ }}
Or  !!λ!! =0693t1/2\text{ }\\!\\!\lambda\\!\\!\text{ }=\dfrac{0\cdot 693}{\text{t1/2}}
as t1/2\text{t1/2} =20 minutes
So  !!λ!! =069320\text{ }\\!\\!\lambda\\!\\!\text{ }=\dfrac{0\cdot 693}{20} ….. (3)
Putting value of (3) in (2), we get
t2t1=0693272080693×20  =200078522 t2t1=20 minutes \begin{aligned} & {{\text{t}}_{2}}-{{\text{t}}_{1}}=\dfrac{0\cdot 69327208}{0\cdot 693}\times 20 \\\ & \text{ }=20\cdot 0078522 \\\ & {{\text{t}}_{2}}-{{\text{t}}_{1}}=20\text{ minutes} \\\ \end{aligned}
So , the correct option is (C) .

Note:
Radioactive decay is the breakdown of atomic nucleus which results in release of energy and matter from the nucleus.
The law of radioactive decay describes the statistical behaviour of a large number of nuclides, rather than individual ones.
Given a sample, the number of decay events dN-\text{dN} in small interval dt is proportional to number of atoms N present, that is:
dNdtα N\dfrac{-\text{dN}}{\text{dt}}\alpha \text{ N}
Or dNN= !!λ!! dt\dfrac{-\text{dN}}{\text{N}}=\text{ }\\!\\!\lambda\\!\\!\text{ dt}
Where  !!λ!! \text{ }\\!\\!\lambda\\!\\!\text{ } =decay constant. On integrating, we get
N=N0 e !!λ!! t\text{N}={{\text{N}}_{0}}\text{ }{{\text{e}}^{-\text{ }\\!\\!\lambda\\!\\!\text{ t}}}
This equation is called the decay rate equation. The half-life is related to decay constant by the formula
t1/2=ln 2 !!λ!! \text{t1/2}=\dfrac{\text{ln 2}}{\text{ }\\!\\!\lambda\\!\\!\text{ }}