Solveeit Logo

Question

Chemistry Question on Order of Reaction

The half life of a radioactive nucleus is 5050 days. The time interval (t2t1_2-t_1) between the time t2_2 when 23\frac{2}{3} ot it has decayed and the time t1t_1, when 13\frac{1}{3} of it had decayed is

A

30 days

B

50 days

C

60 days

D

15 days

Answer

50 days

Explanation

Solution

According to radioactive decay law N=N0eλtN=N_0e^{-\lambda t} where N0_0 = Number of radioactive nuclei at time t= 0 N = Number of radioactive nuclei left undecayed at any time t λ\lambda= decay constant At time t2,23t_2,\frac{2}{3} of the sample had decayed N=13N0\therefore N=\frac{1}{3}N_0 13N0=N0eλt2(i)\quad\therefore \frac{1}{3} N_{0}=N_{0}e^{-\lambda t_{2}} \quad\ldots\left(i\right) At time t1,13t_1, \frac{1}{3} of the sample had decayed, N=23N0\therefore N=\frac{2}{3}N_0 23N0=N0eλt1(ii)\quad\therefore \frac{2}{3}N_{0}=N_{0}e^{-\lambda t_{1}} \quad\ldots\left(ii\right) Divide (i) by (ii), we get 12=eλt2eλt1\frac{1}{2}=\frac{e^{-\lambda t_2}}{e ^{-\lambda t_1}} 12=eλt2(t2t1)\frac{1}{2}=e^{-\lambda t_2}(t_2 -t_1) λ(t2t1)=In2\lambda(t_2-t_1)=In 2 t2t1=In2λ=In2(In2T1/2)(λ=In2T1/2) t_{2}-t_{1}=\frac{In \,2}{\lambda}=\frac{In 2}{\left(\frac{In\, 2}{T_{1 /2}}\right)} \left(\because\lambda=\frac{In\, 2}{T _{1/ 2}}\right) =T12=50=T_{1 2}=50 days