Solveeit Logo

Question

Physics Question on Nuclei

The half-life of a radioactive isotope is 3 h. If the initial mass of the isotope was 300 g, the mass which remained undecayed after 18 h would be

A

4.68 g

B

2.34g

C

1.17 g

D

9.36 g

Answer

4.68 g

Explanation

Solution

Given, Half-life (t1/2)(t_{1/2}) = 3h Initial mass {N0) = 300 g Total time (T) = 18 h Mass left {N) = ? We know that, NN0=(12)n\, \, \, \, \, \, \, \, \, \, \, \, \, \, \frac{N}{N_0}=\Bigg(\frac{1}{2}\Bigg)^n where, n = number of half-lives n=TotaltimeHalflife=183=6\, \, \, \, \, \, \, \, \, \, \, \, \, \, n=\frac{Total time}{Half-life }=-\frac{18}{3}=6 So, N300=(12)6\, \, \, \, \, \, \, \, \, \, \, \frac{N}{300}=\Bigg(\frac{1}{2}\Bigg)^6 So, 1300=164\, \, \, \, \, \, \, \, \, \, \, \frac{1}{300}=\frac{1}{64} N=30064=4.68g\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, N=\frac{300}{64}=4.68g