Solveeit Logo

Question

Question: The Half life of \({}_{92}^{238}U\) undergoing \(\alpha\) decay is \(4.5 \times 10^{9}\) years. The ...

The Half life of 92238U{}_{92}^{238}U undergoing α\alpha decay is 4.5×1094.5 \times 10^{9} years. The activity of 1 g sample of 92238U{}_{92}^{238}U is

A

1.23×104Bq1.23 \times 10^{4}Bq

B

1.23×105Bq1.23 \times 10^{5}Bq

C

1.23×103Bq1.23 \times 10^{3}Bq

D

1.23×106Bq1.23 \times 10^{6}Bq

Answer

1.23×104Bq1.23 \times 10^{4}Bq

Explanation

Solution

:T1/2=4.5×109yT_{1/2} = 4.5 \times 10^{9}y

=4.5×109×3.16×107=1.42×1017s= 4.5 \times 10^{9} \times 3.16 \times 10^{7} = 1.42 \times 10^{17}s

One kmol of any isotope contains Avogadro’ number of atoms, so 1 g of 92283U{}_{92}^{283}Ucontains

12.38×103kmol×6.025×1026\frac{1}{2.38 \times 10^{- 3}}kmol \times 6.025 \times 10^{26}atoms per kmol

=25.3×1020= 25.3 \times 10^{20}atoms

Activity ,

R=λN=0.693T1/2N=0.693×25.3×10201.42×1017s1R = \lambda N = \frac{0.693}{T_{1/2}}N = \frac{0.693 \times 25.3 \times 10^{20}}{1.42 \times 10^{17}}s^{- 1}

=1.23×104s1=1.23×104Bq= 1.23 \times 10^{4}s^{- 1} = 1.23 \times 10^{4}Bq