Solveeit Logo

Question

Question: The half life of \({}_{38}^{90}Sr\) is 28 years. The disintegration rate of 15 mg of this isotope is...

The half life of 3890Sr{}_{38}^{90}Sr is 28 years. The disintegration rate of 15 mg of this isotope is of the order of.

A

1011Bq10^{11}Bq

B

1010Bq10^{10}Bq

C

107Bq10^{7}Bq

D

109Bq10^{9}Bq

Answer

1010Bq10^{10}Bq

Explanation

Solution

: Here, T1/2=28years=28×3.154×107sT_{1/2} = 28years = 28 \times 3.154 \times 10^{7}s

As number of atoms in 90 g of 3890sr{}_{38}^{90}sr =6.023×1023= 6.023 \times 10^{23}

\thereforenumber of atoms in 15 mg of 3890sr{}_{38}^{90}sr

=6.023×102390×151000= \frac{6.023 \times 10^{23}}{90} \times \frac{15}{1000}

i.e. N=1.0038×1020N = 1.0038 \times 10^{20}

rate of disintegration, =0.693T1/2N= \frac{0.693}{T_{1/2}}N

=0.693×1.0038×102028×3.15×107=7.877×1010Bq=1010Bq= \frac{0.693 \times 1.0038 \times 10^{20}}{28 \times 3.15 \times 10^{7}} = 7.877 \times 10^{10}Bq = 10^{10}Bq