Solveeit Logo

Question

Question: The half-life decomposition of \({{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}\)is a first order reaction r...

The half-life decomposition of N2O5{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}is a first order reaction represented by N2O5N2O4+1/2O2{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}} \to {{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{4}}} + 1/2{{\rm{O}}_{\rm{2}}}
After 15 min the volume of O2{{\rm{O}}_{\rm{2}}}produced in 9  mL9\;{\rm{mL}} and at the end of the reaction 35  mL35\;{\rm{mL}}. The rate constant is equal to:
A. 115ln3526\dfrac{1}{{15}}\ln \dfrac{{35}}{{26}}
B. 115log4426\dfrac{1}{{15}}\log \dfrac{{44}}{{26}}
C. 115log3536\dfrac{1}{{15}}\log \dfrac{{35}}{{36}}
D. None of the above

Explanation

Solution

For the reaction, N2O5N2O4+1/2O2{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}} \to {{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{4}}} + 1/2{{\rm{O}}_{\rm{2}}}, first we have to write the ICE table from the given information, such as, amount of O2{{\rm{O}}_{\rm{2}}}produced after 15 minutes and at the end of the reaction.

Complete step-by-step answer:
We take A0{A_0} as the initial concentration of N2O5{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}and x as the change of concentration of N2O5{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}. Now, we construct the Initial change Equilibrium (ICE) table.

For the reaction, N2O5N2O4+1/2O2{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}} \to {{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{4}}} + 1/2{{\rm{O}}_{\rm{2}}}

| N2O5{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}| N2O4{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{4}}}| 1/2O21/2{{\rm{O}}_{\rm{2}}}
At t=0| A0{A_0}| 0| 0
at t=15| A0x{A_0} - x| x| x/2 (9mL{\rm{9 mL}})
At t=\infty | 0| A0{A_0}| A02\dfrac{{{A_0}}}{2}(35mL{\rm{35 mL}})

Given that, after 15 minutes, the amount of oxygen is 9mL{\rm{9 mL}}. Now, we calculate the value of x from the ICE table.

x2=9\x=18\begin{array}{l}\dfrac{x}{2} = 9\\\x = 18\end{array}

So, the value of x is 18.

At the end of the reaction, the amount of oxygen is 35mL{\rm{35 mL}}. So, from the fourth row of the ICE table we calculate the value of A0{A_0}.

A02=35A0=70\begin{array}{l}\dfrac{{{A_0}}}{2} = 35\\\\{A_0} = 70\end{array}

Now, we use the rate constant equation.

k=1tln[A0][At]\k=1tlnA0A0x\begin{array}{l}k = \dfrac{1}{t}\ln \dfrac{{\left[ {{A_0}} \right]}}{{\left[ {{A_t}} \right]}}\\\k = \dfrac{1}{t}\ln \dfrac{{{A_0}}}{{{A_0} - x}}\end{array} …… (1)

Here, k is rate constant, t is time, [A0]\left[ {{A_0}} \right]is initial concentration and [At]\left[ {{A_t}} \right]is final concentration.

Now, we put the Value A0{A_0}and x in the equation (1). We also put t=15 in the equation.

k=115ln707018 =115ln7052 =115ln3526\begin{array}{c}k = \dfrac{1}{{15}}\ln \dfrac{{70}}{{70 - 18}}\\\ = \dfrac{1}{{15}}\ln \dfrac{{70}}{{52}}\\\ = \dfrac{1}{{15}}\ln \dfrac{{35}}{{26}}\end{array}

So, the rate constant for the reaction is K=1tln3526K = \dfrac{1}{t}\ln \dfrac{{35}}{{26}}. Hence, the correct option is A.

Note: In the ICE table, students might think that after 15 minutes, amount of O2{{\rm{O}}_{\rm{2}}}formed is x, but actually it is x/2 as 1/2O21/2{{\rm{O}}_{\rm{2}}}is present in the chemical equation. If these values are taken correctly, equilibrium constant can be calculated correctly.