Solveeit Logo

Question

Question: The greatest value of \(f(x) = \sqrt[3]{{(x + 1)}} - \sqrt[3]{{(x - 1)}}\) on \[\left[ {0,{\text{ }}...

The greatest value of f(x)=(x+1)3(x1)3f(x) = \sqrt[3]{{(x + 1)}} - \sqrt[3]{{(x - 1)}} on [0, 1]\left[ {0,{\text{ }}1} \right] is

Explanation

Solution

We have to find the greatest value of f(x)f\left( x \right) on [0 , 1]\left[ {0{\text{ }},{\text{ }}1} \right] . We solve this using the concept of applications of derivatives. To find the maximum value we first differentiate f(x)f\left( x \right) with respect of and the equate the value of, for obtaining the greatest value of the function on [ 0 , 1 ] \left[ {{\text{ }}0{\text{ }},{\text{ }}1{\text{ }}} \right]{\text{ }}
We will neglect the value of xx which does not lie in between the interval [0 , 1]\left[ {0{\text{ }},{\text{ }}1} \right] .

Complete step-by-step solution:
Given :
f(x)=(x+1)3(x1)3f(x) = \sqrt[3]{{(x + 1)}} - \sqrt[3]{{(x - 1)}}
For the greatest value off(x)f\left( x \right), we differentiate f(x)f\left( x \right) with respect to.
Now , differentiatingf(x)f\left( x \right) with respect to
Using the formula ddxxn=nx(n1)\dfrac{d}{{dx}}{x^n} = n{x^{(n - 1)}}
Using this formula and applying it inf(x)f\left( x \right), we get
f(x)=(13)×(x+1)(23)(13)×(x1)(23)f'(x) = (\dfrac{1}{3}) \times {(x + 1)^{(\dfrac{{ - 2}}{3})}} - (\dfrac{1}{3}) \times {(x - 1)^{(\dfrac{{ - 2}}{3})}}
Now , for the point of greatest value
Put f(x)=0f’(x)=0
So, (13)×(x+1)(23)(13)×(x1)(23)=0(\dfrac{1}{3}) \times {(x + 1)^{(\dfrac{{ - 2}}{3})}} - (\dfrac{1}{3}) \times {(x - 1)^{(\dfrac{{ - 2}}{3})}} = 0
On simplification , we get
[(x1)(23)(x+1)(23)][3×(x21)(23)]=0\dfrac{{[{{(x - 1)}^{(\dfrac{2}{3})}} - {{(x + 1)}^{(\dfrac{2}{3})}}]}}{{[3 \times {{({x^2} - 1)}^{(\dfrac{2}{3})}}]}} = 0
The function does not exist for x21=0{x^2} - 1 = 0
does not exist at x = ± 1x{\text{ }} = {\text{ }} \pm {\text{ }}1
Now ,
[(x1)(23)(x+1)(23)]=0[{(x - 1)^{(\dfrac{2}{3})}} - {(x + 1)^{(\dfrac{2}{3})}}] = 0
On further solving ,
(x1)(23)=(x+1)(23){(x - 1)^{(\dfrac{2}{3})}} = {(x + 1)^{(\dfrac{2}{3})}}
Cancelling the powers , we get
( x  1 ) = ( x + 1 )\left( {{\text{ }}x{\text{ }} - {\text{ }}1{\text{ }}} \right){\text{ }} = {\text{ }}\left( {{\text{ }}x{\text{ }} + {\text{ }}1{\text{ }}} \right)
The term of xx gets cancelled in the simplified expression , so there is no value of xx which lies on [0 , 1][0{\text{ }},{\text{ }}1] .
So , the only values which can give the greatest value in the interval are 00 and 11 as they are included in the interval [0 , 1][0{\text{ }},{\text{ }}1] .
But also , does not exist for x = 1x{\text{ }} = {\text{ }}1 ( as shown above )
So , the only possible value of xx is x = 0x{\text{ }} = {\text{ }}0
The value of function f(x)f\left( x \right) at x = 0x{\text{ }} = {\text{ }}0 :
f(0)=(10)3(01)3f(0) = \sqrt[3]{{(1 - 0)}} - \sqrt[3]{{(0 - 1)}}
f(0) = 2f\left( 0 \right){\text{ }} = {\text{ }}2
Thus , the greatest value of the function f(x)f\left( x \right) is 22 .

Note: Using the property of increasing and decreasing function function we can compute that for what value of xx the function is decreasing and for what value of xx the function is increasing . If the first derivative of a function is positive for a value of xx then the particular value of xx gives the minimum value of the function and vice versa .